Autism and inflammation

Journal title PNEI REVIEW
Author/s Dario Siniscalco
Publishing Year 2017 Issue 2017/1 Language Italian
Pages 8 P. 33-40 File size 1093 KB
DOI 10.3280/PNEI2017-001004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Autism and autism spectrum disorders (ASD) include complex neurodevelopmental disorders characterized by cognitive, social interaction and communication, language defects and behavioral problems. The interaction between genetic and environmental factors is the basis of this disorder, although the pathogenesis is not yet entirely clear. A series of biochemical events are associated with autism, as well as immune dysfunction and gastrointestinal problems. The inflammatory and immune-mediated component is particularly important in the development of these disorders. Recent evidences emphasize that the endocannabinoid system is a key molecular component and regulator of immune and inflammatory dysfunction.

Keywords: Autism, endocannabinoids, neuro-immunomodulation

  1. Al-Ayadhi LY e Mostafa GA (2013) Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children, J Neuroinflammation 10:72. doi.org/10.1186/1742-2094-10-72
  2. Agudelo M, Newton C, Widen R, et al. (2008) Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murinepurified B lymphocytes, J Neuroimm Pharmacol 3(1):35-42. doi.org/10.1007/s11481-007-9088-9
  3. Ashwood P, Wills S e Van de Water J (2006) The immune response in autism: A new frontier for autism research, J Leukocyte Biol 80(1):1-15. doi.org/10.1189/jlb.1205707
  4. Basu S e Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease, Immun Res 51(1):26-38. doi.org/10.1007/s12026-011-8210-5
  5. Buescher AV, Cidav Z, Knapp M, et al. (2014) Costs of autism spectrum disorders in the United Kingdom and the United States, JAMA Pediatr 168(8):72172-72178. doi.org/10.1001/jamapediatrics.2014.210
  6. Cencioni MT, Chiurchiù V, Catanzaro G, et al. (2010) Anandamide suppressesproliferation and cytokine release from primary human T-lymphocytesmainly via CB2 receptors, PLoS One 5(1):e8688. doi.org/10.1371/journal.pone.0008688
  7. Christensen DL, Baio J, Van Naarden Braun K, et al. (2016) Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012, MMWR Surveill Summ 65(3):1-23. doi.org/10.15585/mmwr.ss6503a1
  8. De Theije CG, Wopereis H, Ramadan M, et al. (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders, Brain Behav Immun 37:197-206. doi.org/10.1016/j.bbi.2013.12.005
  9. Enstrom AM, Onore CE, Van de Water JA, et al. (2010) Differential monocyte responses to TLR ligands in children with autism spectrum disorders, Brain Behav Immun 24(1):64-71. doi.org/10.1016/j.bbi.2009.08.001
  10. Földy C, Malenka RC e Südhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling, Neuron 78(3):498-509. doi.org/10.1016/j.neuron.2013.02.036
  11. Garbett K, Ebert PJ, Mitchell A et al. (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism, Neurobiol Dis 30(3):303-311. doi.org/10.1016/j.nbd.2008.01.012
  12. Gottfried C, Bambini-Junior V, Francis F, et al. (2015) The Impact of Neuroimmune Alterations in Autism Spectrum Disorder, Front Psychiatry 6:121. doi.org/10.3389/fpsyt.2015.00121
  13. Gupta S, Samra D e Agrawal S (2010) Adaptive and innate immune responses in autism: rationale for therapeutic use of intravenous immunoglobulin, J Clin Immunol 30:S90-S96. doi.org/10.1007/s10875-010-9402-9
  14. Hume DA (2008) Macrophages as APC and the dendritic cell myth, J Immunol 181:5829-5835. doi.org/10.4049/jimmunol.181.9.5829
  15. Ishiguro H, Horiuchi Y, Ishikawa M, et al. (2010) Brain cannabinoid CB2 receptor in schizophrenia, Biol Psych 67(10):974-982. doi.org/10.1016/j.biopsych.2009.09.024
  16. Jean-Gilles L, Gran B e Constantinescu CS (2010) Interaction between cytokines, cannabinoids and the nervous system, Immunobiology 215(8):606-610. doi.org/10.1016/j.imbio.2009.12.006
  17. Li X, Chauhan A, Sheikh AM, et al. (2009) Elevated immune response in the brain of autistic patients, J Neuroimmunol 207(1–2):111-116. doi.org/10.1016/j.jneuroim.2008
  18. Meltzer A e Van de Water J (2017) The Role of the Immune System in Autism Spectrum Disorder, Neuropsychopharmacology 42(1):284-298. doi.org/10.1038/npp.2016.158
  19. Molloy CA, Morrow AL, Meinzen-Derr J, et al. (2006) Elevated cytokine levels in children with autism spectrum disorder, J Neuroimmunol 172(1-2):198-205. doi.org/10.1016/j.jneuroim.2005.11.007
  20. Robinson SA, Loiacono RE, Christopoulos A, et al. (2010) The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling, Brain Res 1343:153-167. doi.org/10.1016/j.brainres.2010.04.031
  21. Schneider M e Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: Effects of chronic pubertal cannabinoid treatment, Neuropsychopharmacology 30(5):944-957. doi.org/10.1038/sj.npp.1300634
  22. Schultz ST (2010) Can autism be triggered by acetaminophen activation of the endocannabinoid system?, Acta Neurobiol Exp (Wars) 70(2):227-231.
  23. Schultz ST e Gould GG (2016) Acetaminophen Use for Fever in Children Associated with Autism Spectrum Disorder, Autism Open Access 6(2):170. doi.org/10.4172/2165-7890.1000170
  24. Servadio M, Melancia F, Manduca A, et al. (2016) Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid, Transl Psychiatry 6(9):e902. doi.org/10.1038/tp.2016.182
  25. Siniscalco D, Sapone A, Cirillo A, et al. (2012a) Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future?, J Biomed Biotechnol 2012:480289. doi.org/10.1155/2012/480289
  26. Siniscalco D, Sapone A, Giordano C, et al. (2012b) The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients, J Autism Dev Disord 42(7):1403-1410. doi.org/10.1007/s10803-011-1373-z
  27. Siniscalco D, Di Marsilio A e Antonucci N (2013a) Ethics in Autism Care, Autism 3:e119. doi.org/10.4172/2165-7890.1000e119
  28. Siniscalco D, Cirillo A, Bradstreet JJ, et al. (2013b) Epigenetic findings in autism: new perspectives for therapy, Int J Environ Res Public Health 10(9):4261-4273. doi.org/10.3390/ijerph10094261
  29. Siniscalco D, Sapone A, Giordano C, et al. (2013c) Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders, J Autism Dev Disord 43(11):2686-2695. doi.org/10.1007/s10803-013-1824-9
  30. Siniscalco D e Antonucci N (2014) Role of proteases in autism spectrum disorders, in: Chakraborti S e Dhalla NS (eds) 2014, Proteases in Health and Disease, Springer Science, New York, pp.327-333.
  31. Siniscalco D, Antonucci N, Maione S, et al. (2014a) Receptor/regulatory molecules pattern changes: caspases in autism spectrum disorders, in: Patel VB, Preedy VR e Martin CR (eds) 2014, A comprehensive guide to autism. Biochemical aspects in autism spectrum disorders, Springer-Verlag, New York, pp. 1245-1257.
  32. Siniscalco D (2014b) Endocannabinoid System as Novel Therapeutic Target for Autism Treatment, Autism Open Access 4:e122. doi.org/10.4172/2165-7890.1000e122
  33. Siniscalco D (2014c) Adhesion G-protein Coupled Receptors in Autism, Autism-Open Access 4:e126. doi.org/10.4172/2165-7890.1000e126
  34. Siniscalco D, Bradstreet JJ, Cirillo A, et al. (2014d) The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages, J Neuroinflammation 11:78. doi.org/10.1186/1742-2094-11-78

Dario Siniscalco, Autismo ed infi ammazione in "PNEI REVIEW" 1/2017, pp 33-40, DOI: 10.3280/PNEI2017-001004