Low-dose therapy for the control of infl ammation

Journal title PNEI REVIEW
Author/s Massimo Fioranelli, Paola Petrelli, Maria Grazia Roccia
Publishing Year 2017 Issue 2017/2 Language Italian
Pages 12 P. 59-70 File size 1120 KB
DOI 10.3280/PNEI2017-002006
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Low grade chronic inflammation (LGCI) is a very common condition; the incidence is proportional to age. Patients with chronic inflammatory disease have a higher risk of cardiovascular disease (CVD) and related mortality. Cardiovascular risk factors are of course a key factor for the onset of CVD; however, LGC acts independently: it accelerates atherosclerosis, favors myocardial infarction, cerebrovascular disease and heart failure (HF). Modulation of systemic system inflammation goes through various interventions: nutrition, exercise, microbiota control, stress modulation. A promising role is attributed to low-dose therapy that uses low doses of natural principles and biological molecules such as cytokines, neuropeptides, hormones and growth factors.

Keywords: Chronic inflammation, low-grade inflammation, cardiovascular diseases, microbiota, mitochondria, low-dose therapy

  1. Alessandri A.L., Sousa L.P., Lucas C.D., Rossi A.G., Pinho V. and Texeira M.M. (2013). Resolution of infl ammation: mechanisms and opportunity for drug development. Pharmacol. Ther., 139(2): 189-212. DOI: 10.1016/J.PHARMTHERA.2013.04.00
  2. Berger S., Raman G., Vishwanathan R., Jacques P.F. and Johnson E.J. (2015). Dietary cholesterol and cardiovascular disease: a systematic review and meta-analysis. Am. J. Clin. Nutr., 102(2): 276-294. DOI: 10.3945/AJCN.114.10030
  3. Bleau C., Karelis A.D., St-Pierre D.H. and Lamontagne L. (2015). Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab. Res. Rev., 31(6): 545-561. DOI: 10.1002/DMRR.261
  4. Brady N.R., Hamacher-Brady A., Westerhoff H.V. and Gottlieb R.A. (2006). A wave of reactive oxygen species (ROS)-induced ROS release in a sea of excitable mitochondria. Antioxid. Redox Signal., 8(9-10): 1651-1665. DOI: 10.1089/ARS.2006.8.165
  5. Collins S.M. and Bercik P. (2009). The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterol., 136(6): 2003-2014. DOI: 10.1053/J.GASTRO.2009.01.07
  6. Compare D., Coccoli P., Rocco A., Nardone O.M., De Maria S., Carteni M. and Nardone G. (2012). Gut--liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis., 22(6): 471-476. DOI: 10.1016/J.NUMECD.2012.02.00
  7. Dai X. and Wang B. (2015). Role of gut barrier function in the pathogenesis of nonalcoholic Fatty liver disease. Gastroenterol. Res. Pract., 2015: ID 287348. DOI: 10.1155/2015/28734
  8. Dan Dunn J., Alvarez L.A., Zhang X. and Soldati T. (2015). Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol., 6: 472-485. DOI: 10.1016/J.REDOX.2015.09.005
  9. Dessein P.H., Solomon A., Woodiwiss A.J., Norton G.R., Tsang L. and Gonzalez-Gay M.A. (2013). Marked independent relationship between circulating interleukin-6 concentrations and endothelial activation in rheumatoid arthritis. Mediators Inflamm., 2013: ID 510243. DOI: 10.1155/2013/51024
  10. Dinarello C.A. and van der Meer J.W. (2013). Treating inflammation by blocking interleukin-1 in humans. Semin. Immunol., 25(6): 469-484. DOI: 10.1016/J.SMIM.2013.10.00
  11. Eljaafari A., Robert M., Chehimi M., Chanon S., Durand C., Vial G., Bendridi N., Madec A.M., Disse E., Laville M., Rieusset J., Lefai E., Vidal H. and Pirola L. (2015). Adipose Tissue-Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation. Diabetes, 64(7): 2477-2488. DOI: 10.2337/DB15-016
  12. Esser N., Paquot N. and Scheen A.J. (2015). Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin. Investig. Drugs., 24(3): 283-307. DOI: 10.1517/13543784.2015.97480
  13. Ferolla S.M., Silva L.C., Ferrari Mde L., da Cunha A.S., Martins Fdos S., Couto C.A. and Ferrari T.C. (2015). Dietary approach in the treatment of nonalcoholic fatty liver disease. World J. Hepatol., 7(24): 2522-2534. DOI: 10.4254/WJH.V7.I24.252
  14. Festi D., Schiumerini R., Eusebi L.H., Marasco G., Taddia M. and Colecchia A. (2014). Gut microbiota and metabolic syndrome. World J. Gastroenterol., 20(43): 16079-16094. DOI: 10.3748/WJG.V20.I43.1607
  15. Fioranelli M. and Roccia M.G. (2014). Twenty-five years of studies and trials for the therapeutic application of IL-10 immunomodulating properties. From high doses administration to low dose medicine new paradigm. J. Integr. Cardiol., 1(1): 2-6. DOI: 10.15761/JIC.100010
  16. Forsberg E., Xu C., Grünler J., Frostegård J., Tekle M., Brismar K. and Kärvest edt L. (2015). Coenzyme Q10 and oxidative stress, the association with peripheral sensory neuropathy and cardiovascular disease in type 2 diabetes mellitus. J. Diabetes Complications, 29(8): 1152-1158. DOI: 10.1016/J.JDIACOMP.2015.08.00
  17. Forsythe P., Kunze W.A. and Bienenstock J. (2012). On communication between gut microbes and the brain. Curr. Opin. Gastroenterol., 28(6): 557-562. DOI: 10.1097/MOG.0B013E3283572FF
  18. Franceschi C. and Campisi J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A. Biol. Sci. Med. Sci., 69 [Suppl. 1]: S4-S9. DOI: 10.1093/GERONA/GLU05
  19. Freire M.O. and Van Dyke T.E. (2013). Natural resolution of inflammation. Periodontol. 2000, 63(1): 149-164. DOI: 10.1111/PRD.1203
  20. Fujimura K.E., Slusher N.A., Cabana M.D. and Lynch S.V. (2015). Role of the gut microbiota in defining human health. Expert Rev. Anti Infect. Ther., 8(4): 435-454. DOI: 10.1586/ERI.10.1
  21. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583-606.
  22. Ghosh R., Alajbegovic A. and Gomes A.V. (2015). NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species. Oxid. Med. Cell. Longev., 2015: ID 536962. DOI: 10.1155/2015/53696
  23. González de Vega C., Speed C., Wolfarth B. and González J. (2013). Traumeel vs. diclofenac for reducing pain and improving ankle mobility after acute ankle sprain: a multicentre, randomised, blinded, controlled and non-inferiority trial. Int. J. Clin. Pract., 67(10): 979-989. DOI: 10.1111/IJCP.1221
  24. Guarner V. and Rubio-Ruiz M,E. (2015). Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip. Top. Gerontol., 40: 99-106. DOI: 10.1159/00036493
  25. Gusdon A.M., Fernandez-Bueno G.A., Wohlgemuth S., Fernandez J., Chen J. and Mathews C.E. (2015). Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. BMC Biochem., 16:22. DOI: 10.1186/S12858-015-0051-
  26. Habib I., Mazulis A., Roginsky G. and Ehrenpreis E.D. (2014). Nonsteroidal anti-inflammatory drugs and inflammatory bowel disease: pathophysiology and clinical associations. Infl amm. Bowel Dis., 20(12): 2493-2502. DOI: 10.1097/MIB.000000000000016
  27. Harrison C.M., Pompilius M., Pinkerton K.E. and Ballinger S.W. (2011). Mitochondrial oxidative stress significantly influences atherogenic risk and cytokineinduced oxidant production. Environ. Health. Perspect., 119(5): 676-681. DOI: 10.1289/EHP.100285
  28. Herrera A., Garcia I., Gaytan N., Jones E., Maldonado A. and Gilkerson R. (2015). Endangered species: mitochondrial DNA loss as a mechanism of human disease. Front. Biosci. (Schol Ed.), 7: 109-124. DOI: 10.2741/42
  29. Hughes P.A., Zola H., Penttila I.A., Blackshaw L.A., Andrews J.M. and Krumbiegel D. (2013). Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am. J. Gastroenterol., 108(7): 1066-1074. DOI: 10.1038/AJG.2013.12
  30. Jin C. and Flavell R.A. (2013). Innate sensors of pathogen and stress: linking inflammation to obesity. J. Allergy Clin. Immunol., 132(2): 287-294. DOI: 10.1016/J.JACI.2013.06.02
  31. Kelly J.R., Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G. and Hyland N.P. (2015). Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell Neurosci., 9: 392. DOI: 10.3389/FNCEL.2015.0039
  32. Koene S. and Smeitink J. (2011). Mitochondrial medicine. J. Inherit. Metab. Dis., 34(2): 247-248. DOI: 10.1007/S10545-011-9292-
  33. Kovatcheva-Datchary P. and Arora T. (2013). Nutrition, the gut microbiome and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol., 27(1): 59-72. DOI: 10.1016/J.BPG.2013.03.01
  34. Larsen S.B., Grove E.L., Würtz M., Neergaard-Petersen S., Hvas A.M. and Kristensen S.D. (2015). The influence of low-grade inflammation on platelets in patients with stable coronary artery disease. Thromb Haemost., 114(3): 519-529. DOI: 10.1160/TH14-12-100
  35. Linnane A.W., Kios M. and Vitetta L. (2007). Coenzyme Q(10)--its role as a prooxidant in the formation of superoxide anion/hydrogen peroxide and the regulation of the metabolome. Mitochondrion, 7 [Suppl]:S51-S61. DOI: 10.1016/J.MITO.2007.03.00
  36. Lotti T. and Perra A. (2014). Bases and Principles of Low Dose Medicine and P.N.E.I. Foundations of Low Dose Pharmacology. Pigmentary Disorders, 1: 5. DOI: 10.4172/JPD.1000E1
  37. Madhumitha H., Mohan V., Deepa M., Babu S. and Aravindhan V. (2014). Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovasc. Diabetol., 13: 1. DOI: 10.1186/1475-2840-13-
  38. Mikhed Y., Daiber A. and Steven S. (2015). Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int. J. Mol. Sci., 16(7): 15918-15953. DOI: 10.3390/IJMS16071591
  39. Minemura M. and Shimizu Y. (2015). Gut microbiota and liver diseases. World J. Gastroenterol., 21(6): 1691-1702. DOI: 10.3748/WJG.V21.I6.169
  40. Nicklas B.J., Penninx B.W., Cesari M., Kritchevsky S.B., Newman A.B., Kanaya A.M., Pahor M., Jingzhong D. and Harris T.B. (2004). Association of visceral adipose tissue with incident myocardial infarction in older men and women: the Health, Aging and Body Composition Study. Am. J. Epidemiol., 160(8): 741-749. DOI: 10.1093/AJE/KWH28
  41. Olivares M., Laparra J.M. and Sanz Y. (2013). Host genotype, intestinal microbiota and inflammatory disorders. Br. J. Nutr., 109 [Suppl. 2]: S76-S80. DOI: 10.1017/S000711451200552
  42. Pietrzyk L., Torres A., Maciejewski R. and Torres K. (2015). Obesity and Obese-related Chronic Low-grade Infl ammation in Promotion of Colorectal Cancer Development. Asian Pac. J. Cancer Prev., 16(10): 4161-4168. DOI: 10.7314/APJCP.2015.16.10.416
  43. Porozov S., Cahlon L., Weiser M., Branski D., Lider O. and Oberbaum M. (2004). Inhibition of IL-1beta and TNF-alpha secretion from resting and activated human immunocytes by the homeopathic medication Traumeel S. Clin. Dev. Immunol., 11(2): 143. DOI: 10.1080/1044667041000172220
  44. Saito T., Mochizuki T., Uchida K., Tsuchiya K. and Nitta K. (2013). Metabolic syndrome and risk of progression of chronic kidney disease: a single-center cohort study in Japan. Heart Vessels., 28(3): 323-329. DOI: 10.1007/S00380-012-0254-
  45. Sobenin I.A., Zhelankin A.V., Mitrofanov K.Y., Sinyov V.V., Sazonova M.A., Postnov A.Y. and Orekhov A.N. (2015). Mutations of mitochondrial DNA in atherosclerosis and atherosclerosis-related diseases. Curr. Pharm. Des., 21(9): 1158-1163.
  46. Stojanović S., Ilić M.D., Ilić S., Petrović D. and Djukić S. (2015). The significance of adiponectin as a biomarker in metabolic syndrome and/or coronary artery disease. Vojnosanit. Pregl., 72(9): 779-784. DOI: 10.2298/VSP140531067
  47. Taubert K.A. (2008). Cardiology patient pages. Can patients with cardiovascular disease take nonsteroidal anti-inflammatory drugs? Circulation, 117(17): e322-324. DOI: 10.1161/CIRCULATIONAHA.107.74913
  48. Tocchi A., Quarles E.K., Basisty N., Gitari L. and Rabinovitch P.S. (2015). Mitochondrial dysfunction in cardiac aging. Biochim. Biophys. Acta., 1847(11): 1424-1433. DOI: 10.1016/J.BBABIO.2015.07.00
  49. Turker Y., Baltaci D., Turker Y., Ozturk S., Sonmez C.I., Deler M.H., Sariguzel F. and Ankarali H. (2015). Investigation of relationship of visceral body fat and inflammatory markers with metabolic syndrome and its components among apparently healthy individuals. Int. J. Clin. Exp. Med., 8(8): 13067-13077.
  50. Vajro P., Paolella G. and Fasano A. (2013). Microbiota and gutliver axis: their influences on obesity and obesity-related liver disease. J. Pediatr. Gastroenterol. Nutr., 56(5): 461-468. DOI: 10.1097/MPG.0B013E318284ABB
  51. Willems P.H., Rossignol R., Dieteren C.E., Murphy M.P. and Koopman W.J. (2015). Redox Homeostasis and Mitochondrial Dynamics. Cell Metab., 22(2): 207-218. DOI: 10.1016/J.CMET.2015.06.00
  52. Wojdasiewicz P., Poniatowski Ł.A. and Szukiewicz D. (2014). The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014: ID 561459. DOI: 10.1155/2014/56145
  53. Yang Y.K., Wang L.P., Chen L., Yao X.P., Yang K.Q., Gao L.G. and Zhou X.L. (2015). Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin. Chim. Acta., 450: 83-89. DOI: 10.1016/J.CCA.2015.08.00

Massimo Fioranelli, Paola Petrelli, Maria Grazia Roccia, Terapia low-dose per il controllo dell’infi ammazione in "PNEI REVIEW" 2/2017, pp 59-70, DOI: 10.3280/PNEI2017-002006