Epigenetics of maternal milk

Journal title PNEI REVIEW
Author/s Eleonora Lombardi Mistura
Publishing Year 2023 Issue 2023/1 Language Italian
Pages 18 P. 35-52 File size 1209 KB
DOI 10.3280/PNEI2023-001003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Breast milk is recognized by the most important scientific societies as an extremely beneficial food for the child and the nurse both in the short and long term and exclu- sive breastfeeding is recommended by them for at least the first six months of life. If the short-term benefits can be traced back to the direct action of substances (nutrients and otherwise) present in breast milk, the long-term ones have more complex roots of an epigenetic nature, The mechanisms through which breastfeeding acts epige- netically are essentially three; activation of enzymes that produce the tags, activation of nuclear receptors, production of epigenetically active metabolites by the microbio- ta. The discovery of maternal milk exosomes containing different microRNAs from woman to woman is recent. These exosomes have the power to cross the intestinal epithelium and arrive intact, with their information load, to all the infant’s organs. The MOM (Milk Oriented Microbiota) contributes to the production of short chain fatty acids (SCFAs) capable of influencing the "epigenetic program" of the infant.

Keywords: Epigenetics, Maternal milk, Signatures, Exosomes, miRNA, Microbiota

  1. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., & Kakulas F. (2016). Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Scientific Reports, 6(1), 20680.
  2. Amatruda, Ippolito, Vizzuso, Vizzari, Banderali, & Verduci. (2019). Epigenetic Effects of n-3 LCPUFAs: A Role in Pediatric Metabolic Syndrome. International Journal of Molecular Sciences, 20(9), 2118.
  3. Anstey E.H., Shoemaker M.L., Barrera C.M., O’Neil M.E., Verma A.B., & Holman D.M. (2017). Breastfeeding and Breast Cancer Risk Reduction: Implications for Black Mothers. American Journal of Preventive Medicine, 53(3), S40–S46.
  4. Barker D. (2003). The midwife, the coincidence, and the hypothesis. BMJ, 327(7429), 1428– 1430.
  5. Cregan M.D., Fan Y., Appelbee A., Brown M.L., Klopcic B., Koppen J., Mitoulas L.R., Piper K.M.E., Choolani M.A., Chong Y.-S., & Hartmann P.E. (2007). Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell and Tissue Research, 329(1), 129–136.
  6. Crick F. (1970). Central Dogma of Molecular Biology. Nature, 227(5258), 561–563.
  7. Danielewicz H. (2022). Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors. Nutrients, 14(15), 3011.
  8. Gangaraju V.K., & Lin H. (2009). MicroRNAs: key regulators of stem cells. Nature Reviews Molecular Cell Biology, 10(2), 116–125.
  9. Hatmal M.M., Al-Hatamleh M.A.I., Olaimat A.N., Alshaer W., Hasan H., Albakri K.A., Alkhafaji E., Issa N.N., Al-Holy M.A., Abderrahman S.M., Abdallah A.M., & Mohamud
  10. R. (2022). Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines, 10(6), 1219.
  11. Irimie A., Braicu C., Pasca S., Magdo L., Gulei D., Cojocneanu R., Ciocan C., Olariu A., Coza O., & Berindan-Neagoe I. (2019). Role of Key Micronutrients from Nutrigene- tic and Nutrigenomic Perspectives in Cancer Prevention. Medicina, 55(6), 283.
  12. Istat. (2017). La Salute Riproduttiva della Donna. Roma: Istituto nazionale di statistica. -- https:// www.istat.it/it/files/2018/03/La-salute-riproduttiva-della-donna.pdf recuperato 08 aprile 2023
  13. Krautkramer K.A., Kreznar J.H., Romano K.A., Vivas E.I., Barrett-Wilt G.A., Rabaglia M.E., Keller M.P., Attie A.D., Rey F.E., & Denu J.M. (2016). Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Molecular Cell, 64(5), 982–992.
  14. Kupsco A., Prada D., Valvi D., Hu L., Petersen M.S., Coull B., Grandjean P., Weihe P., & Baccarelli A.A. (2021). Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Scientific Reports, 11(1), 5840.
  15. Lewontin R. (2006). It Ain’t Necessarily So: The Dream of the Human Genome and Other Illusions. New York, NY: New York Review Books.
  16. Liakou E., Christou E., Iacovidou N., Pouliakis A., Sokou R., Petropoulou C., Volaki P., Triantafyllou A., Zantiotou M., Vrachnis D., Boutsikou T., & Iliodromiti Z. (2022). The Rates of Breastfeeding in Baby-Friendly Hospitals in Greece: A Nationwide Survey. Children, 9(12), 1792.
  17. Lyons K.E., Ryan C.A., Dempsey E.M., Ross R.P., & Stanton C. (2020). Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients, 12(4), 1039.
  18. Ma J.-R., & Wang D.-H. (2016). [Epigenetic effects of human breastfeeding]. Chi- nese Journal of Contemporary Pediatrics, 18(10), 926–930.
  19. Madison B.B. (2016). Srebp2: A master regulator of sterol and fatty acid synthesis. Journal of Lipid Research, 57(3), 333–335.
  20. Mead M.N. (2007). Nutrigenomics: The Genome–Food Interface. Environmental Health Per- spectives, 115(12).
  21. Melnik B., & Schmitz G. (2017). Milk’s Role as an Epigenetic Regulator in Health and Disease. Diseases, 5(1), 12.
  22. Melnik B.C. (2019). Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus. Nutrition & Metabolism, 16(1), 85.
  23. Melnik B.C., Stremmel W., Weiskirchen R., John S.M., & Schmitz G. (2021). Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules, 11(6), 851.
  24. Mosca F. (2019). Resoconto Settimana mondiale per l’Allattamento Materno, 2-7 Ottobre 2019. SIN informa (N. Speciale Settimana Mondiale Allattamento Materno 2019).
  25. Mosca F., & Giannì M.L. (2017). Human milk: composition and health benefits. La Pediatria Medica e Chirurgica, 39(2).
  26. O’Brien J., Hayder H., Zayed Y., & Peng C. (2018). Overview of MicroRNA Bio- genesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, 402.
  27. Pietrzak-Fiećko R., & Kamelska-Sadowska A.M. (2020). The Comparison of Nutritional Value of Human Milk with Other Mammals’ Milk. Nutrients, 12(5), 1404.
  28. Riggs A.D., Russo V.E.A., & Martienssen R.A. (1996). Epigenetic mechanisms of gene regulation. Plainview, NY: Cold Spring Harbor Laboratory Press.
  29. Sadli N., Ackland M.L., De Mel D., Sinclair A.J., & Suphioglu C. (2012). Effects of Zinc and DHA on the Epigenetic Regulation of Human Neuronal Cells. Cellular Physio- logy and Biochemistry, 29(1–2), 87–98. DOI: 10.1159/00033759
  30. SECTION ON BREASTFEEDING, Eidelman A.I., Schanler R.J., Johnston M., Landers S., Noble L., Szucs K., & Viehmann L. (2012). Breastfeeding and the Use of Human Milk. Pediatrics, 129(3), e827–e841.
  31. Strohmann R.C. (2003). Genetic determinism as a failing paradigm in biology and medicine. Journal of social work education, 39(2):169–191.
  32. Verduci E., Banderali G., Barberi S., Radaelli G., Lops A., Betti F., Riva E., & Gio- vannini M. (2014). Epigenetic Effects of Human Breast Milk. Nutrients, 6(4), 1711– 1724.
  33. Verduci E., Giannì M.L., Vizzari G., Vizzuso S., Cerasani J., Mosca F., & Zuccotti
  34. G.V. (2021). The Triad Mother-Breast Milk-Infant as Predictor of Future Health: A Nar- rative Review. Nutrients, 13(2), 486.
  35. Verier C., Meirhaeghe A., Bokor S., Breidenassel C., Manios Y., Molnár D., Artero E.G., Nova E., De Henauw S., Moreno L.A., Amouyel P., Labayen I., Bevilacqua N., Turck D., Béghin L., Dallongeville J., Gottrand F., & on behalf of the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) Study Group. (2010). Breast-Feeding Modulates the Influence of the Peroxisome Proliferator–Activated Re- ceptor-γ (PPARG2) Pro12Ala Polymorphism on Adiposity in Adolescents. Diabetes Care, 33(1), 190–196.
  36. Wang J., Hodes G.E., Zhang H., Zhang S., Zhao W., Golden S.A., Bi W., Menard C., Kana V., Leboeuf M., Xie M., Bregman D., Pfau M.L., Flanigan M.E., Esteban-Fer- nández A., Yemul S., Sharma A., Ho L., Dixon R., Merad M., Han M.-H., Russo S.J., & Pasinetti G.M. (2018). Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nature Communications, 9(1), 477.
  37. Yip W., Hughes M.R., Li Y., Cait A., Hirst M., Mohn W.W., & McNagny K.M. (2021). Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Frontiers in Immu- nology, 12, 628453.
  38. Yuan X., Tsujimoto K., Hashimoto K., Kawahori K., Hanzawa N., Hamaguchi M., Seki T., Nawa M., Ehara T., Kitamura Y., Hatada I., Konishi M., Itoh N., Nakagawa Y., Shimano H., Takai-Igarashi T., Kamei Y., & Ogawa Y. (2018). Epigenetic modula- tion of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nature Communications, 9(1), 636.
  39. Kowalczyk P., Kaczyńska K., Kleczkowska P., Bukowska-Ośko I., Kramkowski K., & Sulejczak D. (2022). The Lactoferrin Phenomenon—A Miracle Molecule. Molecules, 27(9), 2941.

Eleonora Lombardi Mistura, Epigenetica del latte materno in "PNEI REVIEW" 1/2023, pp 35-52, DOI: 10.3280/PNEI2023-001003