Una valutazione integrata degli impatti produttivi ed economici del cambiamento della variabilità climatica in un’area mediterranea irrigua

Titolo Rivista QA Rivista dell’Associazione Rossi-Doria
Autori/Curatori Gabriele Dono, Raffaele Cortignani, Luca Doro, Nicola Lacetera, Luigi Ledda, Massimiliano Pasqui, Sara Quaresima, Andrea Vitali, Pier Paolo Roggero, Graziano Mazzapicchio
Anno di pubblicazione 2015 Fascicolo 2014/4 Lingua Italiano
Numero pagine 34 P. 201-234 Dimensione file 325 KB
DOI 10.3280/QU2014-004009
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Una valutazione integrata degli impatti produttivi ed economici del cambiamento della variabilità climatica in un’area mediterranea irrigua Quest’articolo analizza l’effetto dei cambiamenti climatici su temperature, piovosità, esigenze irrigue e disponibilità idrica di un’area mediterranea, integrando relazioni bio-fisiche ed economiche. L’analisi della distribuzione di probabilità (Pdf) delle variabili climatiche mostra che nel futuro prossimo aumenterà la probabilità di avere temperature e fabbisogni irrigui alti e disponibilità idrica bassa. Un modello economico simula le scelte delle imprese agricole data l’incertezza rappresentata dalla variabilità delle Pdf. Le colture soffrono soprattutto per la minore disponibilità idrica, che si può contrastare migliorando le infrastrutture irrigue collettive. La produzione del latte bovino patisce l’aumento delle temperature, che si può mitigare con sistemi di raffrescamento.;

Keywords:Adattamento ai cambiamenti climatici, Cambiamento della variabilità climatica, Programmazione stocastica discreta, Evapotraspirazione netta e fabbisogni irrigui, Disponibilità idrica, Cambiamenti climatici e produzione del latte bovino

  1. American Meteorological Society (2014), «Climate Variability», Glossary of Meteorology, available online: http://glossary.ametsoc.org/wiki/”term” (last access: 15 July 2014).
  2. Baldaccini P., Dettori B., Ginesu S., Madrau S., Marchi M., Passino A.M., Pietracaprina A., Pulina M.A. (1981), Rilievo integrale dell’area di Tottubella (Sardegna nord-occidentale), Atti dell’Istituto di Mineralogia e geologia, vol. 2, Università di Sassari. Bernabucci U., Biffani S., Bugiotti L., Vitali A., Lacetera N., Nardone A. (2014), «The Effects of Heat Stress in Italian Holstein Dairy Cattle», Journal of Dairy Science, 97, pp. 471-486.
  3. Bertocchi L., Vitali A., Lacetera N., Nardone A., Bernabucci U. (2013), «A Retrospective Study on Seasonal Variations of Milk Cow Composition and Temperature Humidity Index Relationship», Animal, 8, 04, April, pp. 667-674.
  4. Brooke A., Kendrick D., Meeraus A. (1996), GAMS Release 2.25: A User's Guide, Washington, DC: GAMS Development Corporation.
  5. Brown R.A., Rosenberg N.J. (1999), «Climate Change Impacts on the Potential Productivity of Corn and Winter Wheat in their Primary United States Growing Regions», Climatic Change, 41, 1, pp. 73-107.
  6. Brunetti M., Maugeri M., Navarra A., Nanni T. (2002), «Droughts and Extreme Events in Regional Daily Italian Precipitation Series», International Journal of Climatology, 22, pp. 543-558.
  7. Brunetti M., Maugeri M., Monti F., Nanni T. (2004), «Changes in Daily Precipitation Frequency and Distribution in Italy Over the Last 120 Years», Journal of Geophysical Research, 109, pp. 1-16.
  8. Calatrava J., Garrido A. (2005), «Modelling Water Markets Under Uncertain Water Supply», European Review of Agricultural Economics, June, 32, 2 pp. 119-142.
  9. Chavas D.R., Izaurralde R.C., Thompson A.M., Gao X. (2009), «Long-Term Climate Change Impacts on Agricultural Productivity in Eastern China», Agricultural and Forest Meteorology, 149, 6-7, pp. 1118-1128.
  10. Chessa P.A., Cesari D., Delitala A.M.S. (1999), «Regimes of Precipitation and Temperature in Sardinia (Italy) and the Related Synoptic Situations», Theoretical and Applied Climatology, 63, pp. 195-222.
  11. Connor J., Schwabe K., King D., Kaczan D., Kirby M. (2009), «Impacts of Climate Change on Lower Murray Irrigation», The Australian Journal of Agricultural and Resource Economics, 53, pp. 437-456.
  12. Coulibaly J., Sanders J., Preckel P., Baker T. (2011), «Cotton Price Policy and New Cereal Technology in the Malian Cotton Zone», American Agricultural Economics Association Annual Meeting, Pittsburgh, Pennsylvania, July 24-26.
  13. Conversi A., Fonda Umani S., Peluso T., Molinero J.C., Santojanni A., Edwards M. (2010), «The Mediterranean Sea Regime Shift at the End of the 1980s, and Intriguing Parallelisms with Other European Basins», PLoS ONE, 5, 5, e10633. DOI: 10.1371/journal.pone.0010633.pp.1-1
  14. Delitala A.M.S., Cesari D., Chessa P.A. (2000), «Precipitation Regimes Over Sardinia (Italy) During the 1946-1993 Rainy Season and Associated Large-Scale Climatic Variations», International Journal of Climatology, 20, pp. 519-542.
  15. Dhakhwa G.B., Campbell C.L., LeDuc S.K., Cooter E.J. (1997), «Maize Growth: Assessing the Effects of Global Warming and CO2 Fertilization with Crop Models», Agricultural and Forest Meteorology, 87, pp. 253-272.
  16. De Salvo M., Raffaelli R., Moser R. (2013), «The Impact of Climate Change on Permanent Crops in an Alpine Region: A Ricardian Analysis», Agricultural
  17. Systems, 118, pp. 23-32. Dono G., Mazzapicchio G. (2010), «Uncertain Water Supply in an Irrigated Mediterranean Area: An Analysis of the Possible Economic Impact of Climate Change on the Farm Sector», Agricultural Systems, 103, 6, pp. 361-370.
  18. Dono G., Cortignani R., Doro L., Giraldo L., Ledda L., Pasqui M., Roggero PP. (2013a), «Adapting to Uncertainty Associated With Short-Term Climate Variability Changes in Irrigated Mediterranean Farming Systems», Agricultural Systems, 117, pp. 1-12.
  19. Dono G., Cortignani R., Doro L., Giraldo L., Ledda L., Pasqui M., Roggero PP. (2013b), «Integrated Assessment of Productive and Economic Impacts of Change in Climate Variability in an Irrigated Agricultural Catchment Under Mediterranean Conditions», Water Resources Management, August, 27, 10, pp. 3607-3622
  20. Dono G., Marongiu S., Severini S., Sistu G., Strazzera E. (2008), Studio sulla gestione sostenibile delle risorse idriche: analisi dei modelli di consumo per usi irrigui e civili, ENEA, Collana Desertificazione – Progetto RIADE, Roma, ISBN 88-8286-155-4
  21. Easterling W.E., Crosson P.R., Rosenberg N.J., McKenney M.S., Katz L. A., Lemon K.M. (1993), «Agricultural Impacts of and Responses to Climate Change in the Missouri-Iowa-Nebraska-Kansas (MINK) Region», Climatic Change, 24, pp. 23-61.
  22. Farina R., Seddaiu G., Orsini R., Roggero P.P., Francaviglia R., (2011), «Soil Carbon Dynamics and Crop Productivity as Influenced by Climate Change in a Rainfed Cereal System Under Contrasting Tillage Using Epic», Soil & Tillage Research, 112, pp. 36-46.
  23. Fezzi C., Bateman I., Askew T., Munday P., Pascual U., Sen A., Harwood A. (2014), «Valuing Provisioning Ecosystem Services in Agriculture: The Impact of Climate Change on Food Production in the United Kingdom», Environmental & Resource Economic, 57, pp. 197-214
  24. Finger J.M., Kreinin M.E. (1979), «A Measure of Export Similarity and Its Possible Uses», The Economic Journal, 89, pp. 905-12.
  25. García-Ruiz J.M., López-Moreno J.I., Vicente-Serrano S.M., Lasanta–Martínez T., Beguería S. (2011), «Mediterranean Water Resources in a Global Change Scenario », Earth-Science Reviews, 105, 3-4, April, pp. 121-139.
  26. Ghiglieri G., Carletti A., Pittalis D. (2012), «Analysis of Salinization Processes in the Coastal Carbonate Aquifer of Porto Torres (NW Sardinia, Italy)», Journal of Hydrology, 432 pp. 43-51.
  27. Ghiglieri G., Barbieri G., Vernier A., Carletti A., Demurtas N., Pinna R., Pittalis D. (2009), «Potential Risks of Nitrate Pollution in Aquifers from Agricultural Practices in the Nurra Region, Northwestern Sardinia, Italy», Journal of hydrology, 379, 3, pp. 339-350.
  28. Hargreaves G.L., Samani Z.A. (1982), «Estimating Potential Evapotranspiration», Journal of the Irrigation and Drainage Engineering, ASCE 108, 3, pp. 225-230.
  29. Hayhoe H.N. (1998), «Relationship Between Weather Variables in Observed and Wxgen Generated Data Series», Agricultural and Forest Meteorology, 90, pp.
  30. 203-214. Iglesias A., Garrote L., Quiroga S., Moneo M. (2009), Impacts of Climate Change in Agriculture in Europe, PESETA-Agriculture Study, Office for Official Publications of the European Communities, EUR – Scientific and Technical Research series, Luxembourg.
  31. Lang G. (2007), «Where Are Germany’s Gains from Kyoto? Estimating the Effects of Global Warming on Agriculture», Climatic Change, 84, 3, pp. 423-439.
  32. Liu J., Williams J.R., Zehnder A.J.B., Yang H. (2007), «GEpic – Modelling Wheat Yield and Crop Water Productivity with High Resolution on a Global Scale», Agricultural Systems, 94, pp. 478-493.
  33. Massetti E., Mendelsohn R. (eds.) (2012), The Impact of Climate Change on US Agriculture: A Cross-Section, Multi-Period, Ricardian Analysis, in Ariel Dinar and Robert Mendelsohn, Handbook on Climate Change and Agriculture, Edward Elgar. Northampton, Massachussetts, Usa.
  34. McCarl B.A., Spreen T.H. (1997), «Applied Mathematical Programming Using Algebraic Systems», available on line: http://agecon2.tamu.edu/people/faculty/mccarlbruce/mccspr/thebook.pdf (last access: 20 June 2014).
  35. Mendelsohn R., Nordhaus W.D., Shaw D. (1994), «The Impact of Global Warming on Agriculture: A Ricardian Analysis», The American Economic Review, 84(4), pp. 753-771.
  36. Mosnier C., Agabriel J., Lherm M., Reynaud A. (2009), «A Dynamic Bio-Economic Model to Simulate Optimal Adjustment of Suckler Cow Farm Management and Market Shocks in France», Agricultural Systems, 102, pp. 77-88.
  37. Mosnier C., Agabriel J., Lherm M., Reynaud A. (2011), «On-Farm Weather Risk Management in Suckler Cow Farms: A Recursive Discrete Stochastic Programming Approach», XIII EAAE Congress Change and Uncertainty Challenges for Agriculture, Food and Natural Resources, August 30-September 2, ETH Zurich, Zurich, Switzerland
  38. Niu X., Easterling W., Hays C.J., Jacobs A., Mearns L. (2009), «Reliability and Input-Data Induced Uncertainty of Epic Model to Estimate Climate Change Impact on Sorghum Yields in the U.S», Great Plains, Agriculture, Ecosystem and Environment, 129, 1-3, pp. 268-276.
  39. NOAA (National Oceanic and Atmospheric Administration) (2010), Mauna Loa CO2 Annual Mean Data, Earth System Research Laboratory (ESRL), http://www.esrl.noaa.gov/gmd/ccgg/trends/ (last access: 26 July 2012).
  40. Orlandini S.,Nejedlik P., Eitzinger J., Alexandrov V., Toulios L., Calanca P., Trnka M., and Olesen J. E. (2008), «Impacts of Climate Change and Variability on European Agriculture», Annals of the New York Academy of Sciences, 1146, 1, pp. 338-353.
  41. Palosuo T., Kersebeaum K.C., Angulo C., Hlavinka P., Moriondo M., Olesen J.E., Patil R.H., Ruget F., Rumbaur C., Takac J., Trnka M., Bindi M., Caldag B., Ewert F., Ferrise R., Mirschel W., Saylan L., Siska B., Rotter R. (2010), «Simulation of Winter Wheat Yield and Its Variability in Different Climates of Europe », European Journal of Agronomy, 35, pp. 103-114.
  42. Preckel V.P. (2008), Quantitative Economic Analysis via Mathematical Programming, Department of Agricultural Economics, Purdue University. Priya S., Shibasaki R. (2001), «National Spatial Crop Yield Simulation Using GISBased Crop Production Model», Ecological Modelling, 136, pp. 113-129.
  43. Reidsma P., Ewert F., Lansink A.O., Leemans R. (2010), «Adaptation to Climate Change and Climate Variability in European Agriculture: The Importance of Farm Level Responses», European Journal of Agronomy, 32, 1, pp. 91-102.
  44. Rötter R.P., Palosuo T., Kersebaum K.C., Angulo C., Bindi M., Ewert F., Ferrise R., Hlavinka P., Moriondo M., Nendel C., Olesen J.E., Patil R.H., Ruget F., Takáč J., Trnka M. (2012), «Simulation of Spring Barley Yield in Different Climatic Zones of Northern and Central Europe: A Comparison of Nine Crop Models», Field Crops Research, 133, pp. 23-36.
  45. Semenov M.A., Shewry P.R. (2011), «Modelling Predicts that Heat Stress, Not Drought, Will Increase Vulnerability of Wheat in Europe», Scientific Reports, 1, pp. 1-5. DOI: 10.1038/srep0006
  46. Tan G., Shibasaki R. (2003) «Global Estimation of Crop Productivity and the Impacts of Global Warming by GIS and Epic Integration», Ecological Modelling, 168, pp. 357-70.
  47. Vitali A., Segnalini M., Bertocchi L., Bernabucci U., Nardone A., Lacetera N. (2009), «Seasonal Pattern of Mortality and Relationships between Mortality and Temperature Humidity Index in Dairy Cows», Journal of Dairy Science, 92, pp. 3781-3790.
  48. Van Passel S., Massetti E., Mendelsohn R. (2012) «A Ricardian Analysis of the Impact of Climate Change on European Agriculture», FEEM Nota di Lavoro, 083.2012, November.
  49. Williams J.R., Jones C.A., Kiniry J.R., Spanel D.A. (1989), «The Epic Crop Growth Model», Trans ASAE, 32, pp. 497-511.

Gabriele Dono, Raffaele Cortignani, Luca Doro, Nicola Lacetera, Luigi Ledda, Massimiliano Pasqui, Sara Quaresima, Andrea Vitali, Pier Paolo Roggero, Graziano Mazzapicchio, Una valutazione integrata degli impatti produttivi ed economici del cambiamento della variabilità climatica in un’area mediterranea irrigua in "QA Rivista dell’Associazione Rossi-Doria" 4/2014, pp 201-234, DOI: 10.3280/QU2014-004009