Click here to download

The silent pandemic of neurodevelopmental disorders
Journal Title: PNEI REVIEW 
Author/s: Ernesto Burgio, Cristina Panisi 
Year:  2017 Issue: Language: Italian 
Pages:  16 Pg. 17-32 FullText PDF:  1125 KB
DOI:  10.3280/PNEI2017-001003
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

In recent years, there has been a strong research development on aspects of the pathogenesis of autism which are closely interconnected: the role of the immune system of mother and child and consequently of the infl ammation; stress during pregnancy and in the early stages of life; oxidative stress and related mitochondrial dysfunction; the disrupting action of environmental chemistry. These new knowledge about pathogenesis of the disorder can guide the therapist not to get trapped in its medical skill (child neuropsychiatry) and to see the whole. In this framework the article describes the scientifi c evidence available on the use of different preventive and therapeutic tools of nutritional, relational, and cognitive type.
Keywords: 20°-21° century epidemiological transition, silent pandemic, DOHaD theory

  1. Centers for Disease Control and Prevention (2012) Prevalence of autism spectrum disorder - Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008, MMWR Surveill Summ 61(SS03):1-19.
  2. Chen C, MA Q, Liu C, et al. (2014) Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of Embryonic neural stem cells, Sci Rep 4:5103.
  3. De Theije CG, Wu J, da Silva SL, et al. (2011) Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management, Eur J Pharmacol 668(1):70-80.
  4. Ding HT, Taur Y e Walkup JT (2017) Gut Microbiota and Autism: Key Concepts and Findings, J Autism Dev Disord 47:480-489.
  5. Editors of The Lancet (2010) Retraction--Ileal-lymphoid-nodular hyperplasia, non-specifi c colitis, and pervasive developmental disorder in children, Lancet 375(9713):445 .
  6. Eskenazi B, Marks AR, Bradman A, et al. (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children, Environ Health Perspect 115:792-798.
  7. Fombonne E (2009) Epidemiology of pervasive developmental disorders, Pediatr Res 65:591-598.
  8. Gillman MW, Barker D, Bier D, et al. (2007) Meeting report on the 3rd International Congress on Developmental Origins of Health and Disease (DOHaD), Pediatr Res 61(5 Pt 1):625-629.
  9. Gluckman PD e Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective, Pediatr Res 56:311-317.
  10. Grandjean P e Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals, Lancet 368:2167-2178.
  11. Grandjean P e Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity, Lancet Neurol 13(3):330-8.
  12. Hertz-Picciotto I e Delwiche L (2009) The rise in autism and the role of age at diagnosis, Epidemiology 20(1):84-90.
  13. Johansson C, Castoldi AF, Onishchenko N, et al. (2007) Neurobehavioural and molecular changes induced by methylmercury exposure during development, Neurotox Res 11:241-260.
  14. Kanner L (1943) Autistic disturbances of affective contact, Nervous Child 2:217-250.
  15. Keil A, Daniels JL, Forssen U, et al. (2010) Parental autoimmune diseases associated with autism spectrum disorders in offspring, Epidemiology 21(6):805-808.
  16. Lahiri DK, Maloney B, Basha MR, et al. (2007) How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: the “LEARn” model (Latent Early Associated Regulation) may explain the triggering of AD, Curr Alzheimer Res 4:219-228.
  17. Landrigan PJ, Sonawane B, Butler RN, et al. (2005) Early environmental origins of neurodegenerative disease in later life, Environ Health Perspect 113:1230-1233.
  18. Lanphear BP, Hornung R, Khoury J, et al. (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis, Environ Health Perspect 113:894-899.
  19. Levy SE, Mandell DS e Schultz RT (2009) Autism, Lancet 374(9701):1627-1638.
  20. McElhanon BO, McCracken C, Karpen S, et al. (2014) Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis, Pediatrics 133(5):872-883.
  21. Meyer U, Feldon J e Dammann O (2011) Schizophrenia and autism: both shared and disorder-specifi c pathogenesis via perinatal infl ammation?, Pediatr Res 69(5 Pt 2):26R-33R.
  22. Michell-Robinson MA, Touil H, Healy LM, et al. (2015) Roles of microglia in brain development, tissue maintenance and repair, Brain 138(Pt 5):1138-1159.
  23. Molloy CA, Morrow AL, Meinzen-Derr J, et al. (2006) Familial autoimmune thyroid disease as a risk factor for regression in children with autism spectrum disorder: A CPEA Study, J Autism Dev Disord 36(3):317-324.
  24. Morgan JT, Chana G, Abramson I, et al. (2012) Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism, Brain Res 1456:72-81.
  25. Onore C, Careaga M e Ashwood P (2012) The role of immune dysfunction in the pathophysiology of autism, Brain Behav Immun 26(3):383-392.
  26. Orihuela R, McPherson CA e Harry GJ (2015) Microglial M1/M2 polarization and metabolic states, Br J Pharmacol 173(4):649-665.
  27. Rauh VA, Garfi nkel R, Perera FP, et al. (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the fi rst 3 years of life among inner-city children, Pediatrics 118(6):e1845-e1859.
  28. Rice D e Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models, Environ Health Perspect 108(Suppl 3):511-533.
  29. Roberts EM, English PB, Grether JK, et al. (2007) Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley, Environ Health Perspect 115:1482-1489.
  30. Sandler HS, Finegold SM, Bolte ER, et al. (2000) Short-Term Benefi t From Oral Vancomycin Treatment of Regressive-Onset Autism, J Child Neurology 15(7):429-435.
  31. Aldad TS, Gan G, Gao XB, et al. (2012) Fetal Radiofrequency Radiation Exposure From 800-1900 Mhz-Rated Cellular Telephones Affects Neurodevelopment and Behavior in Mice, Sci Rep 2:312.
  32. Aldinger KA, Lane CJ, Veenstra-VanderWeele J, et al. (2015) Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder, Autism Res 8(6):771-781.
  33. Anholt GE, Cath DC, van Oppen P, et al. (2010) Autism and ADHD symptoms in patients with OCD: are they associated with specifi c OC symptom dimensions or OC symptom severity?, J Autism Dev Disord 40(5):580-589.
  34. Ashwood P, Corbett BA, Kantor A, et al. (2011) In search of cellular immunophenotypes in the blood of children with autism, PLoS One 6:e19299.
  35. Atladóttir HO, Pedersen MG, Thorsen P, et al. (2009) Association of family history of autoimmune diseases and autism spectrum disorders, Pediatrics 124(2):687-694.
  36. Atladóttir HO, Thorsen P, Østergaard L, et al. (2010) Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders, J Autism Dev Disord 40(12):1423-1430.
  37. Atladóttir HO, Henriksen TB, Schendel DE, et al. (2012) Autism after infection, febrile episodes, and antibiotic use during pregnancy: An exploratory study, Pediatrics 130(6):e1447-e1454.
  38. Bach JF (2002) The effect of infections on susceptibility to autoimmune and allergic diseases, N Engl J Med 347(12): 911-20.
  39. Bilbo SD e Schwarz JM (2012) The immune system and developmental programming of brain and behavior, Front Neuroendocrinol 33(3):267-286.
  40. Blank M e Goodman R (2009) Electromagnetic fi elds stress living cells, Pathophysiol 16(2-3):71-78.
  41. Blaxill MF (2004) What’s going on? The question of time trends in autism, Public Health Rep 119(6):536-551.
  42. Bolte ER (1998) Autism and Clostridium tetani, Med Hypotheses 51:133-144.
  43. Brannen KC, Devaud LL, Liu J, et al. (1998) Prenatal exposure to neurotoxicants dieldrin or lindane alters tert-butylbicyclophosphorothionate binding to GABA(A) receptors in fetal rat brainstem, Dev Neurosci 20(1):34-41.
  44. Brookmeyer R, Johnson E, Ziegler-Graham K, et al. (2007) Forecasting the global burden of Alzheimer’s disease, Alzheimers Dement 3(3):186-91.
  45. Bouchard MF, Bellinger DC, Wright RO, et al. (2010) Attention-defi cit/hyperactivity disorder and urinary metabolites of organophosphate pesticides, Pediatrics 125(6):e1270-e1277.
  46. Burgio E (2011) Il problema dell’incremento dei tumori infantili. Cancerogenesi transplacentare e transgenerazionale, in: Ridolfi R (a cura di) 2011, Progetto Ambiente e Tumori, AIOM, pp. 51-61.
  47. Burgio E (2013a) Notes on the epigenetic origins of childhood cancer, Epidemiol Prev 37(1 Suppl 1):261-265.
  48. Burgio E (2013b) Capitolo 7 Verso un nuovo “Paradigma”: Epigenetica e Rivoluzione Epidemiologica del XX Secolo (PARTE B), in: Burgio E 2013, Ambiente e Salute. Inquinamento, interferenze sul genoma umano e rischi per la salute, CG Edizioni Medico Scientifi che, Torino, pp. 61-67.
  49. Burgio E, Lopomo A e Migliore L (2015a) Obesity and diabetes: from genetics to epigenetics, Mol Biol Rep 42(4):799-818.
  50. Burgio E (2015b) Environment and Fetal Programming: the origins of some current “pandemics”, J Pediatr Neonat Individual Med 4(2):e040237.
  51. Shelton JF, Hertz-Picciotto I e Pessah IN (2012) Tipping the Balance of Autism Risk: Potential Mechanisms Linking Pesticides and Autism, Environ Health Perspect 120(7):944-951.
  52. Schwarz JM e Bilbo SD (2012) Sex, glia, and development: interactions in health and disease, Horm Behav 62:243-253.
  53. Singer, Morris C, Gause C, HS et al. (2009) Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model, J Neuroimmunol 211(1-2):39-48.
  54. Sweeten TL, Bowyer SL, Possey DJ, et al. (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders, Pediatrics 112(5):e420.
  55. Tchaconas A e Adesman A (2013) Autism spectrum disorders: a pediatric overview and update, Curr Opin Pediatr 25:130-144.
  56. Vargas DL, Nascimbene C, Krishnan C, et al. (2005) Neuroglial activation and neuroinfl ammation in the brain of patients with autism, Ann Neurol 57(1):67-81.
  57. Virtanen HE, Rajpert-De Meyts E, Main KM, et al. (2005) Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders, Toxicol Appl Pharmacol, 207(2 Suppl):501-505.
  58. Wakefi eld AJ, Murch SH, Anthony A, et al. (1998) Ileal-lymphoid-nodular hyper-plasia, non-specifi c colitis, and pervasive developmental disorder in children, Lancet, 351(9103):637-641.
  59. Whyatt RM, Barr DB, Camann DE, et al. (2003) Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns, Environ Health Perspect 111(5):749-756.
  60. Whyatt RM, Camann D, Perera FP, et al. (2005) Biomarkers in assessing residential insecticide exposures during pregnancy and effects on fetal growth, Toxicol Appl Pharmacol 206(2):246-254.
  61. Yang X, Wang X, Liu D, et al. (2014) Epigenetic regulation of macrophage polarization by DNA methyltransferase 3b, Mol Endocrinol 28(4):565-574.
  62. Zerbo O, Iosif AM, Walker C, et al. (2013) Is maternal infl uenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (Childhood Autism Risks from Genetics and Environment) study, J Autism Dev Disord 43(1):25-33.
  63. Centers for Disease Control and Prevention (2007) Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2002, MMWR Surveill Summ 56(SS1):12-28.

Ernesto Burgio, Cristina Panisi, The silent pandemic of neurodevelopmental disorders in "PNEI REVIEW" 1/2017, pp. 17-32, DOI:10.3280/PNEI2017-001003


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content