Click here to download

Autism and inflammation
Journal Title: PNEI REVIEW 
Author/s: Dario Siniscalco 
Year:  2017 Issue: Language: Italian 
Pages:  8 Pg. 33-40 FullText PDF:  1093 KB
DOI:  10.3280/PNEI2017-001004
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

Autism and autism spectrum disorders (ASD) include complex neurodevelopmental disorders characterized by cognitive, social interaction and communication, language defects and behavioral problems. The interaction between genetic and environmental factors is the basis of this disorder, although the pathogenesis is not yet entirely clear. A series of biochemical events are associated with autism, as well as immune dysfunction and gastrointestinal problems. The inflammatory and immune-mediated component is particularly important in the development of these disorders. Recent evidences emphasize that the endocannabinoid system is a key molecular component and regulator of immune and inflammatory dysfunction.
Keywords: Autism, endocannabinoids, neuro-immunomodulation

  1. Al-Ayadhi LY e Mostafa GA (2013) Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children, J Neuroinflammation 10:72.
  2. Agudelo M, Newton C, Widen R, et al. (2008) Cannabinoid receptor 2 (CB2) mediates immunoglobulin class switching from IgM to IgE in cultures of murinepurified B lymphocytes, J Neuroimm Pharmacol 3(1):35-42.
  3. Ashwood P, Wills S e Van de Water J (2006) The immune response in autism: A new frontier for autism research, J Leukocyte Biol 80(1):1-15.
  4. Basu S e Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease, Immun Res 51(1):26-38.
  5. Buescher AV, Cidav Z, Knapp M, et al. (2014) Costs of autism spectrum disorders in the United Kingdom and the United States, JAMA Pediatr 168(8):72172-72178.
  6. Cencioni MT, Chiurchiù V, Catanzaro G, et al. (2010) Anandamide suppressesproliferation and cytokine release from primary human T-lymphocytesmainly via CB2 receptors, PLoS One 5(1):e8688.
  7. Christensen DL, Baio J, Van Naarden Braun K, et al. (2016) Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012, MMWR Surveill Summ 65(3):1-23.
  8. De Theije CG, Wopereis H, Ramadan M, et al. (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders, Brain Behav Immun 37:197-206.
  9. Enstrom AM, Onore CE, Van de Water JA, et al. (2010) Differential monocyte responses to TLR ligands in children with autism spectrum disorders, Brain Behav Immun 24(1):64-71.
  10. Földy C, Malenka RC e Südhof TC (2013) Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling, Neuron 78(3):498-509.
  11. Garbett K, Ebert PJ, Mitchell A et al. (2008) Immune transcriptome alterations in the temporal cortex of subjects with autism, Neurobiol Dis 30(3):303-311.
  12. Gottfried C, Bambini-Junior V, Francis F, et al. (2015) The Impact of Neuroimmune Alterations in Autism Spectrum Disorder, Front Psychiatry 6:121.
  13. Gupta S, Samra D e Agrawal S (2010) Adaptive and innate immune responses in autism: rationale for therapeutic use of intravenous immunoglobulin, J Clin Immunol 30:S90-S96.
  14. Hume DA (2008) Macrophages as APC and the dendritic cell myth, J Immunol 181:5829-5835.
  15. Ishiguro H, Horiuchi Y, Ishikawa M, et al. (2010) Brain cannabinoid CB2 receptor in schizophrenia, Biol Psych 67(10):974-982.
  16. Jean-Gilles L, Gran B e Constantinescu CS (2010) Interaction between cytokines, cannabinoids and the nervous system, Immunobiology 215(8):606-610.
  17. Li X, Chauhan A, Sheikh AM, et al. (2009) Elevated immune response in the brain of autistic patients, J Neuroimmunol 207(1–2):111-116.
  18. Meltzer A e Van de Water J (2017) The Role of the Immune System in Autism Spectrum Disorder, Neuropsychopharmacology 42(1):284-298.
  19. Molloy CA, Morrow AL, Meinzen-Derr J, et al. (2006) Elevated cytokine levels in children with autism spectrum disorder, J Neuroimmunol 172(1-2):198-205.
  20. Robinson SA, Loiacono RE, Christopoulos A, et al. (2010) The effect of social isolation on rat brain expression of genes associated with endocannabinoid signaling, Brain Res 1343:153-167.
  21. Schneider M e Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: Effects of chronic pubertal cannabinoid treatment, Neuropsychopharmacology 30(5):944-957.
  22. Schultz ST (2010) Can autism be triggered by acetaminophen activation of the endocannabinoid system?, Acta Neurobiol Exp (Wars) 70(2):227-231.
  23. Schultz ST e Gould GG (2016) Acetaminophen Use for Fever in Children Associated with Autism Spectrum Disorder, Autism Open Access 6(2):170.
  24. Servadio M, Melancia F, Manduca A, et al. (2016) Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid, Transl Psychiatry 6(9):e902.
  25. Siniscalco D, Sapone A, Cirillo A, et al. (2012a) Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future?, J Biomed Biotechnol 2012:480289.
  26. Siniscalco D, Sapone A, Giordano C, et al. (2012b) The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients, J Autism Dev Disord 42(7):1403-1410.
  27. Siniscalco D, Di Marsilio A e Antonucci N (2013a) Ethics in Autism Care, Autism 3:e119.
  28. Siniscalco D, Cirillo A, Bradstreet JJ, et al. (2013b) Epigenetic findings in autism: new perspectives for therapy, Int J Environ Res Public Health 10(9):4261-4273.
  29. Siniscalco D, Sapone A, Giordano C, et al. (2013c) Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders, J Autism Dev Disord 43(11):2686-2695.
  30. Siniscalco D e Antonucci N (2014) Role of proteases in autism spectrum disorders, in: Chakraborti S e Dhalla NS (eds) 2014, Proteases in Health and Disease, Springer Science, New York, pp.327-333.
  31. Siniscalco D, Antonucci N, Maione S, et al. (2014a) Receptor/regulatory molecules pattern changes: caspases in autism spectrum disorders, in: Patel VB, Preedy VR e Martin CR (eds) 2014, A comprehensive guide to autism. Biochemical aspects in autism spectrum disorders, Springer-Verlag, New York, pp. 1245-1257.
  32. Siniscalco D (2014b) Endocannabinoid System as Novel Therapeutic Target for Autism Treatment, Autism Open Access 4:e122.
  33. Siniscalco D (2014c) Adhesion G-protein Coupled Receptors in Autism, Autism-Open Access 4:e126.
  34. Siniscalco D, Bradstreet JJ, Cirillo A, et al. (2014d) The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages, J Neuroinflammation 11:78.

Dario Siniscalco, Autism and inflammation in "PNEI REVIEW" 1/2017, pp. 33-40, DOI:10.3280/PNEI2017-001004


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content