Click here to download

Microbiome and cardiac health
Journal Title: PNEI REVIEW 
Author/s: Enrico Biffi 
Year:  2017 Issue: Language: Italian 
Pages:  13 Pg. 24-36 FullText PDF:  1231 KB
DOI:  10.3280/PNEI2017-002003
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

The gut microbiota (GM) is able to influence host PNEI regulative systems throughout the microbiota-gut-brain-axis (MBGA) and its own genetic heritage (microbioma). Many studies showed the ability of the microbioma to regulate the energetic balance of the human body acting on energetic consumption and adipose tissue deposition. In turn, GM is influenced by nutrition: a high-fat diet in the obese phenotype is able to increase the ratio between Firmicutes and Bacteroidetes, inducing a dysbiosis that, together with metabolic imbalance, genetic and environmental factors as drugs, stress, alcohol, gluten, etc., could increase the intestinal wall permeability and, thus, the absorption of bacterial endotoxins that promote innate immunity activation, establishing a chronic low-grade inflamatory state. This condition augments insulin-resistance and other physiopathological mechanisms at the base of the cardio-metabolic syndrome (CMS). The complexity of the CMS needs an integrated treatment based on both restoration of eubiosis condition and intestinal barrier integrity. To achieve this end, prebiotics, probiotics, colostrum and glutamine carry out paramount therapeutic roles.
Keywords: Chronic low grade inflammation, microbiome, gut microbiota, cardiometabolic syndrome, leaky gut syndrome, dysbiosis

  1. Bäckhed F., Manchester J.K., Semenkovich C.F. and Gordon J.I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-fee-mice. PNAS, 104(3): 979-984., DOI: 10.1073/PNAS.060537410
  2. Bjarnason I. and Takeuchi K. (2009). Intestinal permeability in the pathogenesis of NSAID-induced enteropathy. J. Gastroenterol., 44 [Suppl. 19]: 23-29., DOI: 10.1007/S00535-008-2266-
  3. Cani P.D. and Delzenne N.M. (2009). The role of the gut microbiota in energy metabolism and metabolic disease. Curr. Pharm. Des., 15(13): 1546-1558., DOI: 10.2174/13816120978816816
  4. Cani P.D., Neyrinck A.M., Fava F., Knauf C., Burcelin R.G., Tuohy K.M., Gibson G.R. and Delzenne N.M. (2007). Selective increases of bifi dobacteria in gut microflora improve high-fat-diet-induced diabetes in mice trough a mechanism associated with endotoxaemia. Diabetologia, 50(11): 2374-2383., DOI: 10.1007/S00125-007-0791-
  5. Cani P.D., Osto M., Geurts L. and Everard A. (2012). Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes, 3(4): 279-288., DOI: 10.4161/GMIC.1962
  6. Cario E. (2005). Bacterial interactions with cells of the intestinal mucosa: toll like receptors and NOD2. Gut, 54(8): 1182-1193., DOI: 10.1136/GUT.2004.06279
  7. Costello E.K., Lauber C.L., Hamady M., Fierer N., Gordon J.I. and Knight R (2009). Bacterial community variation in human body habitats across space and time. Science, 326: 1694-1697., DOI: 10.1126/SCIENCE.117748
  8. Dethlefsen L., Huse S., Sogin M.L. and Relman D.A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing, PLoS Biol., 6(11): e280., DOI: 10.1371/JOURNAL.PBIO.006028
  9. Farhadi A., Fields J.Z. and Keshavarzian A. (2007). Mucosal mast cells are pivotal elements in inflammatory bowel disease that connect the dots: stress, intestinal hyperpermeability and inflammation. World J. Gastroenterol., 13(22): 3027-3030., DOI: 10.3748/WJG.V13.I22.302
  10. Frazier T.H., DiBaise J.K. and McClain C.J. (2011). Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury, JPEN 35[5 Suppl.]: 14s-20s., DOI: 10.1177/014860711141377
  11. Guttman J.A., Samji F.N., Li Y., Vogl A.W. and Finlay B.B. (2006). Evidence that tight junctions are disrupted due intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect. Immun., 74(11): 6075-6084., DOI: 10.1128/IAI.00721-0
  12. Hond E.D., Peeters M., Hiele M., Bulteel V., Ghoos Y. and Rutgeerts P. (1999). Effects of glutamine on the intestinal permeability changes induced by indomethacin in humans. Aliment Pharmacol. Ther., 13(5): 679-685., DOI: 10.1046/J.1365-2036.1999.00523.
  13. Koren O., Spor A., Felin J., Fak F., Stombaugh J., Tremaroli V., Behre C.J., Knight R., Fegerberg B., Ley R.E. and Bäckhed F. (2011). Human oral gut, and plaque microbiota in patients with atherosclerosis. PNAS, 108 [Suppl. 1]: 4592-4598., DOI: 10.1073/PNAS.101138310
  14. Ley R.E., Turnbaugh P.J., Klein S. and Gordon J.I. (2006). Microbial ecology: human gut microbes associated with obesity. Nature, 444(7122): 1022-1023., DOI: 10.1038/4441022
  15. Lyte M. (2014). Microbial Endocrinology and the Microbiota-Gut-Brain Axis. In: Lyte M. and Cryan J., editors, Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. New York: Springer., DOI: 10.1007/978-1-4939-0897-4_
  16. Playford R.J., MacDonald C.E., Calnan D.P., Floyd D.N., Podas T., Johnson W., Wicks A.C., Bashir O. and Marchbank T. (2001). Co-administration of the health food supplement bovine colostrums, reduces the acute non-steroidal antiinflammatory drug-induced increase in intestinal permeability. Clin. Sci., 100(6): 627-633., DOI: 10.1042/CS100062
  17. Proctor L.M., Chibba S., McEwen J., Peterson J., Wellington C., Baker C.,
  18. Giovanni M., McInnes P. and Lunsford R.D. (2013). The NIH Human Microbiome Project. In: Fredricks D.N., editor, The Human Microbiota: How Microbial Communities Affect Health and Disease. Hoboken: John Wiley & Sons., DOI: 10.1002/9781118409855.CH
  19. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., Mende D.R., Li J., Xu J., Li S., Li D., Cao J., Wang B., Liang H., Zheng H., Xie Y., Tap J., Lepage P., Bertalan M., Batto J.-M., Hansen T., Le Paslier D., Linneberg A., Nielsen H.B., Pelletier E., Renault P., Sicheritz-Ponten T., Turner K., Zhu H., Yu C., Li S., Jian M., Zhou Y., Li Y., Zhang X., Li S., Qin N., Yang H., Wang J., Brunak S., Doré J., Guarner F., Kristiansen K., Pedersen O., Parkhill J., Weissenbach J., MetaHIT Consortium, Bork P., Erlich S.D. and Wang J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285): 59-65., DOI: 10.1038/NATURE0882
  20. Ravussin Y., Koren O., Spor A., LeDuc C., Gutman R., Stombaugh J., Knight R., Ley R.E. and Leibel R.L. (2012). Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity, 20(4): 738-747., DOI: 10.1038/OBY.2011.11
  21. Stoll L.L., Denning G.M. and Weintraub N.L. (2006). Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular diseases. Curr. Pharm. Des., 32(12): 4229-4245., DOI: 10.2174/13816120677874350
  22. Tabata T., Tani T., Endo Y. and Hanasawa K. (2002). Bacterial translocation and peptidoglycan translocation by acute ethanol administration. J. Gastroenterol., 37(9): 726-731., DOI: 10.1007/S00535020011
  23. Tripathi A., Lammers K.M., Goldblum S., Shea-Donohue T., Netzel-Arnett S., Buzza M.S., Antalis T.M., Vogel S.N., Zhao A., Yang S., Arrietta M.C., Meddings J.B. and Fasano A. (2009). Identifi cation of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2. PNAS, 106(39): 16799-16804., DOI: 10.1073/PNAS.090677310
  24. Wallas J.L. (2013). Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J. Gastroenterol., 19(12): 1861-1876., DOI: 10.3748/WJG.V19.I12.186

Enrico Biffi, Microbiome and cardiac health in "PNEI REVIEW" 2/2017, pp. 24-36, DOI:10.3280/PNEI2017-002003


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content