L’approccio sistemico eMergetico. Prospettive per una valutazione integrata della sostenibilità di progetti civili e piani urbani

Titolo Rivista RIV Rassegna Italiana di Valutazione
Autori/Curatori Silvio Cristiano
Anno di pubblicazione 2019 Fascicolo 2018/71-72 Lingua Italiano
Numero pagine 24 P. 149-172 Dimensione file 791 KB
DOI 10.3280/RIV2018-071008
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Di fronte alla necessità di nuove traiettorie per affrontare e mitigare i grandi cambiamenti di questo secolo, viene qui presentato l’approccio valutativo sistemico-emergetico, ispirato al pensiero sistemico e con forti basi geobiofisiche in grado di supportare un giudizio integrato di sostenibilità. Il concetto di emergia, su cui si fonda tale approccio, integra la valutazione monetaria concentrata sul valore attribuito dal ricevente con la comprensione e contabilizzazione delle risorse reali (energia, materiali, etc.) investite a monte di un processo. Alla trattazione delle caratteristiche scientifiche segue quella delle potenzialità di una valutazione sistemico-emergetica, con particolare attenzione alla progettazione e alla pianificazione. Le prospettive e le caratteristiche di una possibile integrazione strutturale a monte in tali attività sono già espresse in esperienze esistenti di valutazione ex post o in corso, da singoli progetti al metabolismo urbano.;

Keywords:Pensiero Sistemico; Emergia; Valutazione Integrata; Sostenibilità; Progetti Civili; Pianificazione.

  1. Cristiano, S. (in preparazione). Systemic assessment for sustainable design. A complex non-profit hospital in a bioclimatic building in the Saharan-Sahelian region.
  2. Cristiano, S., & Gonella, F. (2017). Tecnologie costruttive, limiti ecologici e sostenibilità sistemica. L’analisi emergetica per valutare un progetto edilizio tra Sahara e Sahel. Progetto Re-Cycle, 4, Il Prato Publishing House, Saonara (PD) -- (ISSN: 2465-1400, http://www.progettorecycle.net/).
  3. Cristiano, S., & Gonella, F. (2019a). Learning From Hybrid Innovative-Vernacular Solutions in Building Design: Emergy Analysis of Sudanese Energy-Saving Technologies. Journal of Environmental Accounting and Management, 7(2), 209-223.
  4. Cristiano, S., & Gonella, F. (2019b). To build or not to build? Megaprojects, resources, and environment: an emergy synthesis for a systemic evaluation of a major highway expansion. Journal of Cleaner Production, 223, 772-789. -- [https://doi.org/10.1016/j.jclepro.2019.03.129]
  5. Georgescu-Rogen, N. (1971). The entropy law and the economic process. Harvard University, Harvard.
  6. Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner production, 114, 11-32. -- [https://doi.org/10.1016/j.jclepro.2015.09.007]
  7. Gonella, F., Cristiano, S., & Spagnolo, S. (2019). Emergy as a tool for an integrated knowledge. In: Brown, M.T., S. Sweeney, D.E. Campbell, S. Huang, T. Rydberg, and S. Ulgiati (eds) (2019). Emergy Synthesis 10: Theory and Applications of the Emergy Methodology. Proceedings of the 10th Biennial Emergy Conference. Center for Environmental Policy, University of Florida, Gainesville. 216 pages.
  8. Gorz, A., & Bosquet, M. (1977). Écologie et liberté. Éditions Galilée. Hall, C., Lindenberger, D., Kümmel, R., Kroeger, T., & Eichhorn, W. (2001). The Need to Reintegrate the Natural Sciences with Economics: Neoclassical economics, the dominant form of economics today, has at least three fundamental flaws from the perspective of the natural sciences, but it is possible to develop a different, biophysical basis for economics that can serve as a supplement to, or a replacement for, neoclassical economics. BioScience, 51(8), 663-673.
  9. International Standard Organisation. (1997). ISO 14040: Environmental Management, Life Cycle Assessment, Principles and Framework. ISO.
  10. International Standard Organisation. (2006). ISO 14044: Environmental Management, Life Cycle Assessment, Requirements and Guidelines. ISO.
  11. Jevons, W.S. (1865), The coal question: An inquiry concerning the progress of the nation, and the probable exhaustion of the coal- mines. Macmillan.
  12. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. -- [https://doi.org/10.1016/j.resconrec.2017.09.005]
  13. Klein, N. (2015). This changes everything: Capitalism vs. the climate. Simon and Schuster.
  14. Leonard, A. (2007). Story of stuff, referenced and annotated script. Journal of Occupational and Environmental Health, 13(1).
  15. Leonard, A. (2010). The story of stuff: How our obsession with stuff is trashing the planet, our communities, and our health-and a vision for change. Simon and Schuster.
  16. Adler, P. S. (2015). Book Review Essay: The Environmental Crisis and Its Capitalist Roots: Reading Naomi Klein with Karl Polanyi—Naomi Klein: This Changes Everything: Capitalism vs. the Climate. Administrative Science Quarterly, 60(2), np13-np25. -- [https://doi.org/10.1177/0001839215579183]
  17. Aydin, E., Kok, N., & Brounen, D. (2017). Energy efficiency and household behavior: the rebound effect in the residential sector. The RAND Journal of Economics, 48(3), 749-782.
  18. [https://doi.org/10.1111/1756-2171.12190] Brown, M. T., & Buranakarn, V. (2003). Emergy indices and ratios for sustainable material cycles and recycle options. Resources, Conservation and Recycling, 38(1), 1-22.
  19. Brown, M. T., & Cohen, M. J. (2008). Emergy and network analysis. In Jörgensen, S.E., & Fath, B.
  20. (Eds.) (2008). Encyclopedia of Ecology. Elsevier, Amsterdam, Netherlands.
  21. Leonard, A. (2013). The story of solutions. The Story of Stuff Project -- website, http://storyofstuff.org, 85-108.
  22. Meadows, D. H. (2008). Thinking in systems: A primer. Chelsea Green Publishing.
  23. Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W. (1972). The limits to growth. Universe Books, New York.
  24. Meillaud, F., Gay, J. B., & Brown, M. T. (2005). Evaluation of a building using the emergy method. Solar energy, 79(2), 204-212. -- [https://doi.org/10.1016/j.solener.2004.11.003]
  25. Ministero delle Infrastrutture e dei Trasporti (2018). Decreto 17 gennaio 2018. Aggiornamento delle «Norme tecniche per le costruzioni».
  26. Monat, J. P., & Gannon, T. F. (2015). What is systems thinking? A review of selected literature plus recommendations. American Journal of Systems Science, 4(1), 11-26.
  27. Odum, H. T. (1971). Environment, Society and Power. John Wiley and Sons, New York.
  28. Odum, H. T. (1983). Systems Ecology; an introduction.
  29. Odum, H. T. (1994). Ecological and general systems: an introduction to systems ecology. Colorado University Pres, Niwot.
  30. Odum, H.T. (1996). Environmental accounting: emergy and environmental decision making. Wiley, New York.
  31. Odum, H. T. (2007). Environment, power, and society for the twenty-first century: the hierarchy of energy. Columbia University Press.
  32. Odum, H.T., & Peterson, L.L. (1972). Relationship of energy and complexity and planning. Architectural Design, 10, 624–629.
  33. Pantaleo, R., & Strada, G. (2011). Centro pediatrico di Emergency in Darfur. Domus 949, luglio/agosto 2011.
  34. Peterson, L. L. (2004). Comments on “Relationship of energy and complexity and planning architectural design”: [Architectural Design 10 (1972) 624–629]. Ecological modelling, 178(1), 167-168. [DOI 10.1016/j.ecolmodel.2003.12.028]
  35. Reza, B., Sadiq, R., & Hewage, K. (2014). Emergy-based life cycle assessment (Em- LCA) of multi-unit and single-family residential buildings in Canada. International Journal of Sustainable Built Environment, 3(2), 207-224. -- [https://doi.org/10.1016/j.ijsbe.2014.09.001]
  36. Sorrell, S., (2009), Jevons’ Paradox revisited: The evidence for backfire from improved energy efficiency. Energy Policy, 37, 1456- 1469. -- [https://doi.org/10.1016/j.enpol.2008.12.003]
  37. Srinivasan, R., & Moe, K. (2015). The hierarchy of energy in architecture: emergy analysis. Routledge.
  38. Sweeney, S., Cohen, M. J., King, D., & Brown, M. T. (2007). Creation of a global emergy database for standardized national emergy synthesis. Emergy synthesis, 4, 483-497.
  39. Tiezzi, E., Marchettini, N., & Bastianoni, S. (a cura di) (2009). Impronta Ecologica e analisi eMergetica. Applicazione locale dei nuovi indicatori di sostenibilità ambientale. Edito dalla Provincia di Venezia, Assessorato alle Politiche Ambientali, stampato presso le Grafiche Biesse.
  40. Viglia, S., Civitillo, D. F., Cacciapuoti, G., & Ulgiati, S. (2018). Indicators of environmental loading and sustainability of urban systems. An emergy-based environmental footprint. Ecological indicators, 94, 82-99. -- [https://doi.org/10.1016/j.ecolind.2017.03.060]
  41. Von Bertalanffy, L. (1950). An outline of general system theory. British Journal for the Philosophy of science.
  42. Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23-29.
  43. Von Bertalanffy, L. (1968). General System Theory. New York, Braziller.
  44. Yi, H., & Braham, W. W. (2015). Uncertainty characterization of building emergy analysis (BEmA). Building and Environment, 92, 538-558. -- [https://doi.org/10.1016/j.buildenv.2015.05.007]
  45. Yi, H., Srinivasan, R. S., & Braham, W. W. (2015). An integrated energy–emergy approach to building form optimization: Use of EnergyPlus, emergy analysis and Taguchi-regression method. Building and Environment, 84, 89-104. -- [https://doi.org/10.1016/j.buildenv.2014.10.013]
  46. Gonella, F., Elia, C., Cristiano, S., Spagnolo, S., & Vignarca, F. (2017). From Head to Head: An Emergy Analysis of a War Rifle Bullet. Peace Economics, Peace Science and Public Policy, 23(2). -- [https://doi.org/10.1515/peps-2017-0004]
  47. Pulselli, R. M., Simoncini, E., Pulselli, F. M., & Bastianoni, S. (2007). Emergy analysis of building manufacturing, maintenance and use: Em-building indices to evaluate housing sustainability. Energy and buildings, 39(5), 620-628. -- [https://doi.org/10.1016/j.enbuild.2006.10.004]
  48. Brown, M. T., & Ulgiati, S. (2011). Understanding the global economic crisis: A biophysical perspective. Ecological Modelling, 223(1), 4-13. [
  49. Brown, M. T., & Ulgiati, S. (2016a). Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling, 339, 126-132. -- [https://doi.org/10.1016/j.ecolmodel.2016.03.017]
  50. Brown, M. T., & Ulgiati, S. (2016b). Emergy assessment of global renewable sources. Ecological Modelling, 339, 148-156. -- [https://doi.org/10.1016/j.ecolmodel.2016.03.010]
  51. Calvo, G., Valero, A., & Valero, A. (2017). Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resources, Conservation and Recycling, 125, 208-217.
  52. Capra, F. (1996). The web of life: A new scientific understanding of living systems. Anchor.
  53. Capra, F., & Luisi, P. L. (2014). The systems view of life: A unifying vision. Cambridge University Press.
  54. Checkland, P. (1999). Systems thinking, systems practice.
  55. Commoner, B. (1971). The closing circle: nature, man, and technology.
  56. Corbett, C. J., & Muthulingam, S. (2007). Adoption of voluntary environmental standards: The role of signaling and intrinsic benefits in the diffusion of the LEED green building standards. Available at SSRN 1009294.
  57. Cristiano, S. (2018a). Systemic Assessment for Sustainable Design – LCA- based Emergy synthesis of an EMERGENCY NGO hospital in Sudan. Tesi di Dottorato, Università Iuav di Venezia.
  58. Cristiano, S. (2018b). Systemic Thoughts on Ecology, Society, and Labour. In: Cristiano, S., a cura di (2018). Through the Working Class. Ecology and Society Investigated Through the Lens of Labour. Edizioni Ca’ Foscari, Venezia. [DOI 10.30687/978-88-6969-296-3]

  • Impacts of COVID-19 Pandemic on the Global Flows of People and Goods: Implications on the Dynamics of Urban Systems Karim Gazzeh, Ismaila Rimi Abubakar, Emad Hammad, in Land /2022 pp.429
    DOI: 10.3390/land11030429
  • On the Systemic Features of Urban Systems. A Look at Material Flows and Cultural Dimensions to Address Post-Growth Resilience and Sustainability Silvio Cristiano, Amalia Zucaro, Gengyuan Liu, Sergo Ulgiati, Francesco Gonella, in Frontiers in Sustainable Cities 12/2020
    DOI: 10.3389/frsc.2020.00012
  • Re-Imagining Resilient Productive Landscapes Silvio Cristiano, pp.289 (ISBN:978-3-030-90444-9)

Silvio Cristiano, L’approccio sistemico eMergetico. Prospettive per una valutazione integrata della sostenibilità di progetti civili e piani urbani in "RIV Rassegna Italiana di Valutazione" 71-72/2018, pp 149-172, DOI: 10.3280/RIV2018-071008