Click here to download

Operative and environmental performance of a hot-foam machine for the herbicide-free weeding of the vineyard
Journal Title: RIVISTA DI STUDI SULLA SOSTENIBILITA' 
Author/s: Davide Facchinetti, Jacopo Bacenetti, Lavinia Eleonora Galli, Garcia Luis Ruiz, Domenico Pessina 
Year:  2019 Issue: 2 Suppl. Language: English 
Pages:  12 Pg. 363-374 FullText PDF:  240 KB
DOI:  10.3280/RISS2019-002-S1023
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 


The elimination of chemical herbicides use is a key factor in vineyards, particularly in the case of biological cultivation. The machines employed for mechanical weeding under the vine row are often characterised by low travelling speeds and therefore also by a low working capacity. A new solution is the application of hot foam, to transmit heat to weeds. A hot-foam machine for the herbicide-free weeding of vineyards was then developed, to produce and deposit foam directly onto weeds. The foam strips produced were approximately 40 cm width and 20-25 cm height, with a temperature exceeding 75°C. The future success of this environmentally sustainable technique will be the identification of a 100% naturally biodegradable and long-lasting foam, to maximize heat transmission to weeds.
Keywords: Hot-foam, bio-weeding, vineyard, impact assessment, herbicides, weeds control.

  1. Bacenetti J., Lovarelli D., Facchinetti D., Pessina D. (2018). An environmental comparison of techniques to reduce pollutants emissions related to agricultural tractors. Biosystems Engineering, 171: 30-40.
  2. Bajwa A.A., Mahajan G., Chauhan B.S. (2015). Nonconventional Weed Management Strategies for Modern Agriculture. Weed Science, 63(4): 723-747.
  3. Balsari P., Berruto R., Ferrero A. (1994). Flame weed control in lettuce crop. Acta Horticulturae, 372: 213-222.
  4. Balsari P., Marucco P., Tamagnone M. (2005). Laboratory Assessment of Sensorbased Weed Control for Vineyards. Information and Technology for Sustainable Fruit and Vegetable Production - FRUTIC 05, Montpellier (France), pp. 679-688.
  5. Cisneros, J.J., and B.H. Zandstra. (2008). Flame weeding effects on several weed species. Weed Technology, 22: 290-295.
  6. Environdec (2012). Product category rules for Fruits and nuts, except kiwi fruit. European Parliament (2009). DIRECTIVE 2009/128/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 October 2009. Official Journal of the European Union, L 309, 71-86
  7. Guerra B. and Steenwerth K. (2012). Influence of Floor Management Technique on Grapevine Growth, Disease Pressure, and Juice and Wine Composition: A Review. American Journal of Enology and Viticulture, 63: 2.
  8. Hansson D., and Ascard J. (2002). Influence of developmental stage and time of assessment on hot water weed control. Weed Research, 42: 307-316.
  9. Harker K.N., O’Donovan J.T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1): 1-11.
  10. Hauschild M. (2000). 22. Estimating pesticide emissions for LCA of agricultural products. Agricultural data for life cycle assessments, 70.
  11. Heinzle Y. (2003). L’entretien des sols viticoles. Travail du sol et désherbage thermique. Le Progrès Agricole et Viticole, 120(6): 127-130.
  12. International Reference Life Cycle Data System (ILCD) Handbook – Towards more sustainable production and consumption for a resource-efficient Europe. JRC Reference Report, EUR 24982 EN. European Commission – Joint Research Centre.
  13. Luxembourg. Publications Office of the European Union; 2012.
  14. ISO 14040. Environmental management – life cycle assessment – principles and framework. International Organization for Standardization; 2006.
  15. ISO 14044. Environmental management – life cycle assessment – requirements and guidelines. International Organization for Standardization; 2006.
  16. Lanini W.T., McGourty G.T., and Thrupp L.A. (2011). Weed management for organic vineyards. In: McGourty G. (ed.). Organic Winegrowing Manual (pp. 69-82).
  17. Richmond: University of California, Agriculture and Natural Resources. Lijó L., González-García S., Bacenetti J., Negri M., Fiala M., Feijoo G., & Moreira M. T. (2015). Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production. Waste management, 41: 50-59.
  18. Lijó L., Lorenzo-Toja Y., González-García S., Bacenetti J., Negri M., & Moreira M. T. (2017). Eco-efficiency assessment of farm-scaled biogas plants. Bioresource Technology, 237: 146-155.
  19. Lovarelli D., Bacenetti J. (2017). Bridging the gap between reliable data collection and the environmental impact for mechanised field operations. Biosystems Engineering, 160: 109-123
  20. Lovarelli D., Fusi A., Pretolani R., Bacenetti J. (2018). Delving the environmental impact of roundwood production from poplar plantations. Science of the Total Environment, 645: 646-654.
  21. Margni M., Rossier D., Crettaz P., & Jolliet O. (2002). Life cycle impact assessment of pesticides on human health and ecosystems. Agriculture, ecosystems & environment, 93(1-3): 379-392.
  22. Martelloni L., Fontanelli F., Frasconi C., Raffaelli M., Peruzzi A. (2016). Crossflaming application for intra-row weed control in maize. Applied Engineering in Agriculture, 32(5): 569-578.
  23. Melander B., Rasmussen I.A., and Bàrberi P. (2005). Integrating physical and cultural methods of weed control: Examples from European research. Weed Science, 53: 369-381.
  24. Otto S., Loddo D., Baldoin C., Zanin G. (2015). Spray drift reduction techniques for vineyards in fragmented landscapes. Journal of Environmental Management, 162: 290-298.
  25. Saber M.N., Lee W.S., Burks T.F., MacDonald G.E., Salvador G.A. (2013). An automated mechanical weed control system for organic row crop production. Conference of ASABE, Kansas City, Missouri, p. 1-7.
  26. Sartorato I., Zanin G., Baldoin C., and De Zanche C. (2006). Observations of the potential of microwaves for weed control. Weed Research, 46: 1-9.
  27. Schmidt Rivera X., Bacenetti J., Fusi A., Niero M. (2017). The influence of fertilizer and pesticide emissions model on life cycle assessment of agricultural products: The case of Danish and Italian barley. Science of the Total Environment, 592: 745-757.
  28. Shaner D.L., Beckie H.J. (2014). The future for weed control and technology. Pest management science, 70(9): 1329-1339.
  29. Susaj L., Susaj E., Belegu M., Mustafa S., Dervishi B. and Ferraj B. (2013). Effects of different weed management practices on production and quality of wine. Journal of Food, Agriculture & Environment, 11(1): 379-382.
  30. Tourte L., Smith R., Bettiga L., Bensen T., Smith J., and Salm D. (2008). Post-emergence herbicides are cost effective for vineyard floor management on the Central Coast. California Agriculture, 62(1): 19-23.
  31. Villaverde J. J., Sevilla-Morán B., Sandín-España P., López-Goti C., & Alonso-Prados J. L. (2014). Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest management science, 70(1): 2-5.
  32. Vincent C., Panneton B., Fleurat-Lessard (2013). Physical control methods in plant protection. Springer Science & Business Media.
  33. Vitelli J. S., and Madigan B. A. (2004). Evaluation of a hand-held burner for the control of woody weeds by flaming. Australian Journal of Experimental Agriculture, 44(1): 75-81.
  34. Willer H. (2008). Organic Viticulture in Europe: Development and current statistics.

Davide Facchinetti, Jacopo Bacenetti, Lavinia Eleonora Galli, Garcia Luis Ruiz, Domenico Pessina, in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 2 Suppl./2019, pp. 363-374, DOI:10.3280/RISS2019-002-S1023

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content