Clicca qui per scaricare

Conceptualising, Analysing and Training in Adults in the Knowledge Society
Autori/Curatori: Tatiana Iñiguez-Berrozpe, Francesco Marcaletti, Carmen Elboj-Saso, Emma Garavaglia 
Anno di pubblicazione:  2020 Fascicolo: 156 Lingua: Inglese 
Numero pagine:  27 P. 143-169 Dimensione file:  341 KB
DOI:  10.3280/SL2020-156007
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più:  clicca qui   qui 

In this article, the authors argue that, within the framework of the current information society and the development of Industry 4.0, a revolution hinges on a stock of skills on which adults in general - and adult workers in particular - need to be trained in order to be prepared for the change and improve their employability. Within these skills, we find computational and critical thinking (CCT) as two key skills for workers which are not being developed in adult education. In this contribution, we propose a conceptualisation of both kinds of thinking, associating them with the Problem Solving in Technology Rich Environments variable of the OECD PIAAC survey. This allows us to propose a CCT training methodology for adults based on Vanek’s (2017) work and to measure and analyse this relevant skill, making it easier to promote CCT teaching-learning in adult education courses.

In questo articolo, gli autori sostengono che, nell’ambito dell’attuale società dell’informazione e dello sviluppo dell’Industria 4.0, è in atto una rivoluzione basata su stock di competenze a cui gli adulti in generale - e i lavoratori adulti in particolare - devono essere formati, al fine di essere preparati per il cambiamento e migliorare la loro occupabilità. All’interno di queste competenze troviamo la competenza computazionale e il pensiero critico (CCT) come due abilità chiave per i lavoratori che non sono sviluppate nell’educazione degli adulti. In questo contributo proponiamo una concettualizzazione di entrambe le competenze, associandole alla variabile Problem Solving in Technology Rich Environments dell’indagine OCSE PIAAC. Ciò ci consente di suggerire una metodologia di formazione CCT per gli adulti, basata sul lavoro di Vanek (2017), e di misurare e analizzare tale competenza, facilitando la promozione dell’insegnamento-apprendimento CCT nei corsi di educazione degli adulti.
Keywords: Pensiero computazionale, pensiero critico, educazione degli adulti, società della conoscenza

  1. Abrami P.C., Bernard R.M., Borokhovski E., Waddington D.I., Wade C.A. Persson T. (2015). Strategies for Teaching Students to Think Critically A Meta-Analysis. Review of Educational Research, 85(2): 275-314.
  2. Akcaoglu M., Koehler M.J. (2014). Cognitive outcomes from the Game-Design and Learning (GDL) after-school program. Computers and Education, 75: 72-81.
  3. Al-Fedaghi S., Alkhaldi A. (2019). Thinking for Computational Thinking. International Journal of Advanced Computer Science and Applications, 10(2): 620-629.
  4. Ater-Kranov A., Bryant R., Orr G., Wallace S., Zhang M. (2010). Developing a community definition and teaching modules for computational thinking: Accomplishments and challenges. Proceedings of the 2010 ACM conference on information technology education. ACM.
  5. Barr V., Stephenson C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community?. ACM Inroads, 2(1): 48-54.
  6. Belbin E., Belbin R.M. (1972). Problems in Adult Retraining. London: Heinemann.
  7. Birren J.E., Fisher L.M. (1995). Aging and Speed of Behavior: Possible Consequences for Psychological Functioning. Annual Review of Psychology, 46(1): 329-353.
  8. Boehm S.A., Schröder H.S., Kunze F. (2013). Comparative Age Management: Theoretical Perspectives and Practical Implications. In: Field J., Burke R. J., Cooper C. L., eds., The SAGE Handbook of Aging, Work and Society. London: SAGE, 211-237., DOI: 10.4135/9781446269916
  9. Boeren E. (2016). Lifelong learning participation in a changing policy context: an interdisciplinary theory. London: Palgrave-Macmillan.
  10. Brookfield S.D. (2011). Teaching for critical thinking: Tools and techniques to help students question their assumptions. London: John Wiley and Sons.
  11. Callahan J.S., Kiker D.S., Cross T. (2003). Does Method Matter? A Meta-Analysis of the Effects of Training Method on Older Learner Training Performance. Journal of Management, 29(5): 663-680., DOI: 10.1016/S0149-2063_03_00029-1
  12. Care E., Griffin G., Wilson, M., eds. (2018). Assessment and teaching of 21st century skills. New York: Springer.
  13. Charters P., Lee M.J., Ko A.J., Loksa D. (2014). Challenging stereotypes and changing attitudes: the effect of a brief programming encounter on adults’ attitudes toward programming. SIGCSE '14 Proceedings of the 45th ACM technical symposium on Computer science education, 653-658.
  14. Cooper S., Pérez L., Rainey D. (2010). K-12 computational learning. Communications of the ACM, 53(11): 27-29., DOI: 10.1145/1839676.1839686
  15. Davies M. (2015). A Model of Critical Thinking in Higher Education. In: Higher Education: Handbook of Theory and Research. Cham: Springer.
  16. Denning P. (2009). The profession of IT beyond computational thinking. Communications of the ACM, 52(6): 28-30., DOI: 10.1145/1516046.1516054
  17. Deschryver M.D., Yadav A. (2015). Creative and computational thinking in the context of new literacies: Working with teachers to scaffold complex technology-mediated approaches to teaching and learning. Journal of Technology and Teacher Education, 23(3): 411-431.
  18. European Commission (2016). New Skills Agenda for Europe. -- Retrieved from
  19. European Commission (2019). The Computational Thinking Study. -- Retrieved from
  20. Evancho R.S. (2000). Critical thinking skills and dispositions of the undergraduate Baccalaureate nursing student. Connecticut: Southern Connecticut State University.
  21. Farris A.V., Sengupta P. (2014). Perspectival computational thinking for learning physics: A case study of collaborative agent-based modeling. In: Proceedings of the 12th international conference of the learning sciences (ICLS 2014).
  22. Flecha R., Soler-Gallart M., Sordé T. (2015). Social impact: Europe must fund social sciences. Nature, 528:193.
  23. Fraillon J., Ainley J., Schulz W., Duckworth D., Friedman T. (2019). Computational thinking framework. In: IEA International Computer and Information Literacy Study 2018 Assessment Framework. London: Springer., DOI: 10.1007/978-3-030-19389-8_3
  24. Green A.J.K., Gillhooly K. (2005). Problem solving. In: Braisby N., Gelatly A., eds., Cognitive Psychology. Oxford: Oxford University Press.
  25. Grover S., Pea R. (2013). Computational Thinking in K–12. A Review of the State of the Field. Educational Researcher, 42(38): 38-43., DOI: 10.3102/0013189X12463051
  26. Halpern D.F. (1998). Teaching critical thinking for transfer across domains: Disposition, skills, structure training, and metacognitive monitoring. American psychologist, 53(4): 449.
  27. Hämäläinen R., De Wever B., Nissinen K., Cincinnato S. (2017). Understanding adults’ strong problem-solving skills based on PIAAC. Journal of Workplace Learning, 29 (7/8): 537-553., DOI: 10.1108/JWL-05-2016-0032
  28. Holford J., Spolar V.A.M. (2012). Neoliberal and inclusive themes in European lifelong learning policy. In: Riddell S., Markowitsch, J., Weedon E., eds., Lifelong learning in Europe: equity and efficiency in the balance. Bristol: Policy Press.
  29. Hu C. (2011). Computational thinking: What it might mean and what we might do about it. In: Proceedings of the 16th annual joint conference on innovation and technology in computer science education. ACM.
  30. Iñiguez-Berrozpe T., Boeren E. (2019). 21st Century Skills for All: Adults and Problem Solving in Technology Rich Environments. Techonology, Knowledge and Learning (online).
  31. Iñiguez-Berrozpe T., Marcaletti F. (2017). Más allá de las TIC. Aprendizaje Permanente para una Sociedad de la Información Inclusiva. EnTERA2.0, 5: 39-53.
  32. Katai Z. (2014). The challenge of promoting algorithmic thinking of both sciences and humanities oriented learners. Journal of Computer Assisted Learning, 31(4): 287-299.
  33. Knowles M. (1980). The modern practice of adult education: From pedagogy to andragogy. Connecticut: Association Press.
  34. Korkmaz Ö. Çakir R., Özden M. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72: 558-569.
  35. Kules B. (2016). Computational Thinking is Critical Thinking: Connecting to University Discourse, Goals, and Learning Outcomes. ASIST 2016, Copenhagen, Denmark.
  36. Larson L.C., Northern Miller T. (2011). 21st Century Skills: Prepare Students for the Future, 21st Century. Kappa Delta Pi Record, 47(3): 121-123., DOI: 10.1080/00228958.2011.10516575
  37. Lee C.H., Garcia A.D. (2014). “I want them to feel the fear…” Leveraging critical computational literacies for English Language Arts success. In: Ferdig R.E., Pytash K.E., eds., Exploring multimodal composition and digital writing. Hershey, PA: Information Science Reference.
  38. Lee C.H., Soep E. (2016). None But Ourselves Can Free Our Minds: Critical Computational Literacy as a Pedagogy of Resistance. Journal Equity and Excellence in Education, 49: 480-492.
  39. Lishinski A., Yadav A., Enbody R., Good J. (2016). The influence of problem-solving abilities on students’ Performance on Different Assessment Tasks in CS1. In: Proceedings of the 47th ACM Technical Symposium on Computing Science Education. New York: ACM.
  40. Maharani S., Kholid M.N., Pradana L.N., Nusantara T. (2019). Problem solving in the context of computational thinking. Infinity, 8(2): 109-116.
  41. OECD PIAAC Expert Group in Problem Solving in Technology Rich Environments (2009). PIAAC Problem Solving in Technology-Rich Environments: A Conceptual Framework, OECD Education Working Papers, 36, Paris: OECD Publishing., DOI: 10.1787/220262483674
  42. OECD (2013). OECD skills outlook 2013: first results from the survey of adult skills. Paris: OECD Publishing.
  43. OECD (2016). Survey of Adult Skills (PIAAC). -- Retrieved from
  44. Reale E. et al. (2017). A review of literature on evaluating the scientific, social and political impact of social sciences and humanities research. Research Evaluation, rvx025.
  45. Rich P.J., Egan, G., Ellsworth, J. (2019). A Framework for Decomposition in Computational Thinking. ITiCSE ’19, July 15–17, 2019, Aberdeen, Scotland Uk.
  46. Selby C., Woollard, J. (2014). Refining an understanding of computational thinking. -- Retrieved from
  47. Soler M. (2017). Achieving social impact: sociology in the public sphere. London: Springer.
  48. Standl B. (2016). A case study on cooperative problem-solving processes in small 9th grade student groups. IEEE global engineering education conference (EDUCON), Abu Dhabi.
  49. Sterns H.L., Deverspike D. (1988). Training and developing the older worker: Implications for Human Resource Management. In: Dennis H., ed., Fourteen steps in managing an aging work force. Lexington, Mass: Lexington Books, 97-110.
  50. Ten Dam G., Volman M. (2004). Critical thinking as a citizenship competence: teaching strategies. Learning and instruction, 14(4): 359-379.
  51. Trawick A.R. (2017). Using the PIAAC Literacy Framework to Guide Instruction: An Introduction for Adult Educators. PIAAC: Washington, DC.
  52. Vanek J. (2017). Using the PIAAC Framework for Problem Solving in Technology-Rich Environments to Guide Instruction: An Introduction for Adult Educators. PIAAC: Washington, DC.
  53. Voskoglou M.G., Buckley S. (2012). Problem solving and computational thinking in a learning environment. Egyptian Computer Science Journal (ECS), 36(4): 28-46.
  54. Weintrop D., Beheshti E., Horn M., Orton K., Jona K., Trouille L. (2015). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1): 127-147.
  55. Wing J. (2006). Computational Thinking. Communications of the ACM, 49(3): 33-35.
  56. Wing J. (2011) Computational thinking: What and why? Carnegie Melon School of Computer Science Discussion Papers. Retrieved from Think/resources/TheLinkWing.pdf.
  57. Yadav A., Good, J., Voogt, J., Fisser, P. (2017). Computational Thinking as an Emerging Competence Domain. In: Mulder M., ed., Competence-based Vocational and Professional Education, Switzerland: Springer.
  58. Živkovic S. (2016). A Model of Critical Thinking as an Important Attribute for Success in the 21st Century. Procedia - Social and Behavioral Sciences, 232: 102-108.

Tatiana Iñiguez-Berrozpe, Francesco Marcaletti, Carmen Elboj-Saso, Emma Garavaglia, in "SOCIOLOGIA DEL LAVORO " 156/2020, pp. 143-169, DOI:10.3280/SL2020-156007


FrancoAngeli è membro della Publishers International Linking Association associazione indipendente e no profit per facilitare l'accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche