Click here to download

Long-term financial sustainability: An evaluation methodology with threats considerations
Journal Title: RIVISTA DI STUDI SULLA SOSTENIBILITA' 
Author/s: Lidiya Guryanova, Olena Bolotova, Vitalii Gvozdytskyi, Sergienko Olena 
Year:  2020 Issue: Language: English 
Pages:  23 Pg. 47-69 FullText PDF:  270 KB
DOI:  10.3280/RISS2020-001004
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 


It is shown that one of the directions for increasing the efficiency of managing corporate systems (CS) under the influence of a large number of destabilizing fa-tors ("shocks", threats) is the development of a set of models of estimation and analysis of the long-term stability of CS in proactive contour of management, which allow timely diagnosing a decrease in the company’s security level and adopting effective preventive management decisions. A review of existing approa-ches to the formation of such a set of models showed a number of limitations, the result of which is a low forecasting accuracy. The proposed approach, unlike the existing ones, allows to: 1) determine the optimal dimension of the information space of diagnostic factors; 2) find the optimal number of classes of situations for which differentiated management strategies can be developed; 3) determine the period of pre-emption, which does not require updating the models of retrospective diagnostics. This makes it possible to identify the class of not only current, but also forecast situations for a given horizon of proactive management and to choose an adequate preventive strategy.
Keywords: Corporate system, evaluation, long-term financial stability, methods of business analytics of multidimensional processes, modelling, proactive manage-ment.

  1. Bratyuk Y. (2018). The biggest ship-wake plant in Ukraine becoming bankrupt. Zaxid.Net. -- Text available at: https://zaxid.net/naybilshiy_sudnobudivniy_zavod_v_ukrayini_stav_bankrutom_n1460745.
  2. Guryanova L.S., Gvozdytskyi V.S., Dymchenko O.V., Rudachenko O.A. (2018). Models of forecasting in the mechanism of early informing and prevention of financial crises in corporate systems. Financial and credit activity: problems of theory and practice, 3(26): 303-312.
  3. Guryanova L., Milevskiy S., Bogachkova L., Lytovchenko I., Polyanskiy V. (2018). Models of assessment and analysis in security management systems. The 5th International Scientific-Practical Conference “Problems of Infocommunications. Science and Technology”, PIC S&T: IEEE, 2018, October 9-12, Kharkiv, Ukraine: Institute of Electrical and Electronics Engineers, Inc., P. 202-209.
  4. Guryanova L., Klebanova T., Trunova T. (2017). Modeling the financial strategy of the enterprise in an unstable environment. Econom Studies journal, 3: 91-109.
  5. Alphabet Investor Relationship. -- Text available at: https://abc.xyz/investor/.
  6. Fabus M., Dubrovina N., Guryanova L., Chernova N., Zyma O. (2019). Strengthening financial decentralization: driver or risk factor for sustainable socio-economic development of territories. Entrepreneurship and Sustainability, 7(2): 875-890.
  7. Fenga M., Shaonan T., Chihoon L., Ling M. (2019). Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2): 743-758.
  8. Heets V. M., Kizim M. O., Klebanova T. S., Chernyak O. I. and others (Ed. by) (2006). Modelling of economic security: state, region, enterprise: monograph. PH «INZHEK», 240 p.
  9. Hosaka T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Applications, 117: 287-299.
  10. Jardin P. (2017). Dynamics of firm financial evolution and bankruptcy prediction. Expert Systems with Applications, 75: 25-43.
  11. Lia L., Faff R. (2019). Predicting corporate bankruptcy: What matters?. International Review of Economics & Finance, 62: 1-19.
  12. Li S., Wang S. (2014). A financial early warning logit model and its efficiency verification approach. Knowledge-Based Systems, 70(C): 78-87.
  13. Kolodiziev O., Chmutova L., Lesik V. (2018). Use of causal analysis to improve the monitoring of the banking system stability. Banks and Bank Systems, 13(2): 39-53.
  14. Materials of the website of the State Statistics Service of Ukraine. -- Text available at: http://www.ukrstat.gov.ua/.
  15. Matviychuk A. (2010). Bankruptcy Prediction in Transformational Economy: Discriminant and Fuzzy Logic Approaches. Fuzzy Economic Review, 15(1): 21-38.
  16. Merkulova T., Bitkova T., Kononova K. (2016). Tax factors of sustainable development: system dynamics approach towards tax evasion analyses. Rivista di Studi sulla Sostenibilità, 1(1): 35-47.
  17. Nyitra T., Virag M. (2019). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 67: 34-42.
  18. Oliskevych M., Beregova G., Tokarchuk V. (2018). Fuel Consumption in Ukraine: Evidence from Vector Error Correction Model. International Journal of Energy Economics and Policy, Econ journals, 8(5): 58-63.
  19. Oliskevych M., Lukianenko I. (2019). Labor force participation in Eastern European countries: nonlinear modeling. Journal of Economic Studies, 46(6): 1258-1279.
  20. Omelchuk N. (2016). 10 famous companies that crashed. PaySpace Magazine Global. -- Text available at: https://psm7.com/review/kanuli-v-letu-10-poterpevshix-krax-izvestnyx-kompanij.html.
  21. Qu Y., Quan P., Lei M., Shi Y. (2019). Review of bankruptcy prediction using machine learning and deep learning techniques. Procedia Computer Science, 162: 895-899.
  22. S&P Dow Jones Indices. -- Text available at: https://us.spindices.com/indices/equity/sp-500.
  23. Shen G., Jia W. (2014). The Prediction Model of Financial Crisis Based on the Combination of Principle Component Analysis and Support Vector Machine. Open Journal of Social Sciences, 2(9): 204-212.
  24. Stolbov M., Shchepeleva M. (2020). Systemic risk, economic policy uncertainty and firm bankruptcies: Evidence from multivariate causal inference. Research in International Business and Finance, 52.
  25. Tech Stocks That Move The Market. Yahoo Finance. -- Text available at: https:/finance.yahoo.com/u/yahoo-finance/watchlists/tech-stocks-that-move-the-market/.
  26. Vito G., Simone C., Landolo F. and Vito P. (2018). Sustainability in the Italian Scientific Perspective: A Focus on the Economic and Managerial Points of View. Rivista di Studi sulla Sostenibilità, 2: 9-26.
  27. Yehorycheva S., Kolodiziev O., Prasolova S. (2017). Actual Problems of the Ukraine’s Banking System Capital Stability Management. Banks and Bank Systems, 12(2): 60-67.
  28. Yu-Chien Ko, Hamido Fujita, Tianrui Li (2017). An evidential analysis of Altman Z-score for financial predictions; Case study on solar energy companies. Applied Soft Computing, 52(C): 748-759.

Lidiya Guryanova, Olena Bolotova, Vitalii Gvozdytskyi, Sergienko Olena, in "RIVISTA DI STUDI SULLA SOSTENIBILITA'" 1/2020, pp. 47-69, DOI:10.3280/RISS2020-001004

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content