The performance of credit scoring models in contexts of strong macroeconomic instability: The role of Artificial Neural Networks

Journal title MANAGEMENT CONTROL
Author/s Enrico Supino, Nicola Piras
Publishing Year 2022 Issue 2022/2 Language Italian
Pages 21 P. 41-61 File size 369 KB
DOI 10.3280/MACO2022-002003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page .

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Anteprima articolo

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The study addresses the problem related to the performance of the tools for forecasting corporate crises in periods characterized by strong macroeconomic instability (financial crises, pandemics, wars, etc.). The results obtained show how the performances of the models decrease over time and how, in a period characterized by strong macroeconomic instability, more evident drops in performance are observed. Particularly, with reference to the hotel sector in Italy, in correspondence with and immediately after the financial crisis of 2008, it emerges that artificial neural networks produce more precise and less volatile predictions than the classical models used in the literature (linear discriminant analysis and logistic regression).

Keywords: Insolvency forecasting, Credit risk, Early warning system, Credit scoring, Artificial Neural Networks

  1. Abdou H., Pointon J., El-Masry A. (2008), Neural nets versus conventional techniques in credit scoring in Egyptian banking, Expert Systems with Applications, 35(3), pp. 1275-1292.
  2. Agostini M., Casciello R., Fiondella C., Maffei M., Mechelli A., Ricci F., Ricciardi A., Santonastaso R., Turco M., Zagaria C. (2021), Gli strumenti di allerta, Le parole della crisi. La lettura degli aziendalisti italiani, pp. 7-15. -- https://www.sidrea.it/wp-content/uploads/2021/06/Le-parole-della-crisi-versione-finale-2.pdf.
  3. Akkoç S. (2012), An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data, European Journal of Operational Research, 222(1), pp. 168-178.
  4. Altman E.I. (1968), Financial ratios, discriminant analysis and the prediction of corporate bankruptcy, The Journal of Finance, 23(4), pp. 589-609.
  5. Altman E.I. (1973), Predicting Railroad Bankruptcies in America Author (s): Edward I . Altman Source, The Bell Journal of Economics and Management Science, 4(1), pp. 184-211.
  6. Altman E.I., Haldeman R.G., Narayanan P. (1977), ZETATM analysis A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1(1), pp. 29-54. DOI: 10.1016/0378-4266(77)90017-6
  7. Amaduzzi A. (1963), L’azienda nel suo sistema e nell’ordine delle sue rilevazioni, Utet, Torino.
  8. Aziz M.A., Dar H.A. (2006), Predicting corporate bankruptcy: where we stand?, Corporate Governance, 6(1), pp. 18-33.
  9. Baghdasaryan V., Davtyan H., Grigoryan A., Khachatryan K. (2021), Comparison of econometric and deep learning approaches for credit default classification, Strategic Change, 30(3), pp. 257-268.
  10. Bastia P., (2019), Crisi aziendali e piani di risanamento, Giappichelli, Torino.
  11. Beaver W.H. (1966), Financial Ratios As Predictors of Failure, Journal of Accounting Research, 4(May). DOI: 10.2307/2490171
  12. Bellovary J., Giacomino D., Akers M. (2007), A Review of Bankruptcy Prediction Studies : 1930 to Present, Review Literature and Arts of The Americas, 33(Winter), pp. 1-42.
  13. Bertini U. (1975), L’azienda come sistema cibernetico, in AA.VV., Scritti in onore del professor Alberto Riparbelli, Cursi, Pisa.
  14. Bertini U. (1990), Il sistema d’azienda: schema di analisi, Giappichelli, Torino.
  15. Bertoni M., De Rosa B., Rossi P. (2021), “Early Warnings”: incremento nella capacità di risposta o perdita di rilevanza? Management Control, 1, pp. 175-194. DOI: 10.3280/MACO2021-001009
  16. Bogarelli P., Castellano N., Fradeani A., Gaetano A., Riva P. (2021), L’assetto organizzativo, amministrativo e contabile, in Le parole della crisi. La lettura degli aziendalisti italiani, pp. 7-15. -- https://www.sidrea.it/wp-content/uploads/2021/06/Le-parole-della-crisi-versione-finale-2.pdf.
  17. Catturi G. (1994), La teoria dei flussi e degli stocks ed il sistema dei valori d’impresa: conversazioni con gli studenti sulla creazione del valore, Cedam, Padova.
  18. Cenciarelli V.G., Mattei M.M., Greco G. (2020), Pressione competitiva e previsione dell’insolvenza. Management Control, 3, pp. 35-58.
  19. Chuang C.L., Lin R.H. (2009), Constructing a reassigning credit scoring model. Expert Systems with Applications, 36(2 part 1), pp. 1685-1694.
  20. Coda V. (1983), L’analisi delle relazioni causa-effetto nel governo delle imprese, Finanza, Marketing e Produzione, 2, pp. 31-52.
  21. Danovi A., Riva P., Quagli A. (2021), Il sistema di allerta, in Danovi A., Riva P., Quagli A. (a cura di), Gestire la crisi d’impresa, Ipsoa, Milano.
  22. Deakin E.B. (1972), A Discriminant Analysis of Predictors of Business Failure, Journal of Accounting Research, 10(1), p. 167. DOI: 10.2307/2490225
  23. Desai V.S., Crook J.N., Overstreet G.A. (1996), A comparison of neural networks and linear scoring models in the credit union environment, European Journal of Operational. DOI: 10.1016/0377-2217(95)00246-4
  24. Galassi G. (1978), Sistemi contabili e assiomatici e sistemi teorici deduttivi, Pàtron Editore, Bologna.
  25. Gallucci C., Santulli R., De Rosa M. (2018), I sistemi di alert per le imprese del settore moda: un’analisi preliminare nel nuovo contesto normativo, Esperienze d’impresa, 1, pp. 41-64.
  26. Hoo-Ha N., Jinn Taehong (2000), Bankruptcy Prediction: Evidence from Korean Listed Companies during the IMF Crisis, Journal of International Financial Management and Accounting, 11(3), pp. 178-197
  27. Ianni L., Marullo G., Migliori S., De Luca F. (2021), I modelli predittivi della crisi e dell’insolvenza aziendale. Una systematic review, Management Control, 2, pp. 127-146. DOI: 10.3280/MACO2021-002007
  28. Machek O. (2014), Long-term Predictive Ability of Bankruptcy Models in the Czech Republic: Evidence from 2007-2012, Central European Business Review, 3(2), pp. 14-17.
  29. Madonna S., Cestari G. (2021), Politiche di prevenzione: dai modelli predittivi ai sistemi di allerta, in Danovi A., Riva P., Quagli A. (a cura di), Gestire la crisi d’impresa, Ipsoa, Milano.
  30. Matacena A. (1984), Impresa e ambiente: il bilancio sociale, Clueb, Bologna.
  31. Max A., Wing J., Weston S., Williams A., Keefer C., Engelhardt A., Cooper T., Mayer Z., Ziem A., Scrucca L., Hunt T., Kuhn M.M. (2021), Package ‘caret’ R topics documented .
  32. McCulloch W.S., Pitts W. (1943), A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5, pp. 115-133. DOI: 10.1007/978-3-030-01370-7_61
  33. Messier Jr W.F., Hansen J.V. (1988), Inducing Rules For Expert System Development: An Example Using Default and Bankruptcy Data, Management Science, 34(12), pp. 1403-1415.
  34. Min S., Lee J., Han I. (2006), Hybrid genetic algorithms and support vector machines for bankruptcy prediction, Expert Systems with Applications, n. 31, pp. 652-660.
  35. Min J.H., Jeong C. (2009), A binary classification method for bankruptcy prediction, Expert Systems with Applications, 36(3), pp. 5256-5263.
  36. Ohlson J.A. (1980), Financial Ratios and the Probabilistic Prediction of Bankruptcy, Journal of Accounting Research, 18(1), pp, 109-131. DOI: 10.2307/2490395
  37. Paganelli O. (1976), Il sistema aziendale: note ad uso degli studenti, Clueb, Bologna.
  38. Paganelli O. (1977), Analisi di bilancio, Clueb, Bologna.
  39. Paolini A., Teodori C., Giuliani M., Poli S. (2021), L’equilibrio economico-finanziario e gli squilibri di carattere reddituale, patrimoniale o finanziario, Le parole della crisi. La lettura degli aziendalisti italiani, pp. 27-28. -- https://www.sidrea.it/wp-content/uploads/2021/06/Le-parole-della-crisi-versione-finale-2.pdf.
  40. Paoloni M., Celli M. (2018), Crisi delle PMI e strumenti di warning. Un test di verifica nel settore manifatturiero, Management Control, 2. pp. 85-106. DOI: 10.3280/MACO2018-002005
  41. Ricciardi A., Crovini C., Menicacci L, Simoni L., Tommaso S. (2021), Le prassi nazionali e internazionali, Le parole della crisi. La lettura degli aziendalisti italiani, pp. 7-15. -- https://www.sidrea.it/wp-content/uploads/2021/06/Le-parole-della-crisi-versione-finale-2.pdf.
  42. Roever A.C., Raabe N., Luebke K., Ligges U., Szepannek G., Zent M., Meyer D. (2020), Package ‘klaR’.
  43. Rumelhart D.E., Hinton G.E., Williams R.J. (1986), Learning Representations by Back-Propagating Errors. Nature, 323, pp. 533-536.
  44. Taffler R.J. (1982), Forecasting Company Failure in the UK Using Discriminant Analysis and Financial Ratio Data Author (s), Journal of the Royal Statistical Society, 145(3), pp. 342-358.
  45. Tam K.Y., Years, I.N.R. (1991), Neural Network Models and the Prediction of Bank Bankruptcy, Omega, 19(5) pp. 589-609

Enrico Supino, Nicola Piras, Le performance dei modelli di credit scoring in contesti di forte instabilità macroeconomica: il ruolo delle Reti Neurali Artificiali in "MANAGEMENT CONTROL" 2/2022, pp 41-61, DOI: 10.3280/MACO2022-002003