Click here to download

Diversity of food systems for securing future food availability
Journal Title: ECONOMIA AGRO-ALIMENTARE 
Author/s: Catherine Macombe 
Year:  2018 Issue: Language: English 
Pages:  20 Pg. 351-370 FullText PDF:  152 KB
DOI:  10.3280/ECAG2018-003006
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 


We depict the different models of likely future value chains for agro food sector. The starting points of the reflection are the main coming geo-physical constraints acknowledged by most scientists (rising sea level; climate disaster higher frequency; scarcity of concentrated energy and other material resources). Thus the effects of the coming changes (and especially the effects of the global warming) on agriculture are a regular study topic, while the effects of the other constraints, and the likely evolution of the food systems as a whole, remain quite overlooked. When there is a general scarcity of resources (as it is the case for oil and minerals over the coming decades), the present value chains may no longer function. We draw from these evidences to design 6 models of food value chains (including farming, processing and delivery systems). We therefore describe the models: "Today" (any food, in-store selling everywhere, at any time); "Amazon" (any food, at home in metropoles, at any time); "Cart" (mainly local food, in streets of cities and villages, seasonal products); "Roman villa" (local food, at farm, seasonal products); "Survival" (energetic food, specific location, in response to disasters or to "hunger gap"); "Export foods" (spices, salt etc., at any time). Only the last four together will be frugal enough to be compliant with the future geo-physical constraints. We also explore some consequences in terms of the future way of life, around the topics of agricultural work and cities.
Keywords: Forecast, food security, food system, diversity, frugal
Jel Code: Q10, Q130, O330

  1. Altieri, M.A., Nicholls, C.I., Henao, A., & Lana, M.A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869-890.
  2. Auerbach, R. (2018). Organic research and government support improve organic policy and progress in Danish, Swiss, American and African case studies. Economia Agro-Alimentare/Food Economy, 20(3), 331-347., 10.3280/ECAG2018-003005DOI: 10.3280/ECAG2018-003005
  3. Ba, M., Gresset-Bourgeois, M., & Quirion, P. (2016). L’effet sur l’emploi d’une transition ecologique de l’agriculture en France: le cas du scenario Afterres. Courrier de l’Environnement de l’INRA, n. 66, 93-102.
  4. Bihouix, P. (2017). Le mythe de la technologie salvatrice. Esprit, mars-avril, (3), 98-106.
  5. Calzadilla, A., Rehdanz, K., & Tol, R.S.J. (2011). Trade Liberalization and Climate Change: A Computable General Equilibrium Analysis of the Impacts on Global Agriculture. Water, 3(2), 526-550.
  6. Clark, E.A. (2011). The future is organic: but it’s more than organic. -- www.resilience.org/stories/2011-03-07/future-organic-its-more-organic/ (February 2018).
  7. Campagne, A. (2016). Intervention – Le Capitalocene. La dynamique historique du «capitalisme fossile» –, PDS 070116, séminaire de l’EHESS Politiques des sciences (2015-16), 18 janvier 2016.
  8. Candy, S., Turner, G.M., Sheridan, J., & Carey, R. (2018). Quantifying Melbourne’s “Foodprint”: a scenario modelling methodology to determine the environmental impact of feeding a city. Economia Agro-Alimentare/Food Economy, 20(3), 369-397., 10.3280/ECAG2018-003007DOI: 10.3280/ECAG2018-003007
  9. Coley, D., Howard, M., & Winter, M. (2009) Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. Food Policy, 34(2), 150-155.
  10. Dahlberg, K.A., (1994). A transition from agriculture to regenerative food systems. Futures, 26(2), 170-179., 10.1016/0016-3287(94)90106-6DOI: 10.1016/0016-3287(94)90106-6
  11. Dennis, K., & Urry, J. (2009). After the car. Cambridge (UK): Polity Press.
  12. Dupont, C. (2012). Ne confondons pas coquilles et coquillages. Techniques & Culture, 59, 242-259.
  13. Du Pont de Romemont, A. (2014). Apprentissage et réflexion stratégique des producteurs agricoles: construction de la proactivité dans le conseil à l’exploitation familiale au Bénin, these en sciences de gestion, sous la direction de Guy Faure, Edeg, Abies.
  14. fao (2017). The state of food security and nutrition in the World, annual flagship report jointly prepared by fao, IFAD, UNICEF, WFP and WHO, September 2017.
  15. Ferdiere A., Malrain, F., Matterner-Seck, V., Meniel, P., Nissen Jaubert, A., & Pradat, B. (2006). Histoire de l’agriculture en Gaule: 500 Avant J-C - 1000 après J-C. Paris: Editions Errance.
  16. Friedrichs, J. (2010). Global energy crunch: How different parts of the world would react to a peak oil scenario. Energy Policy, 38, 4562-4569.
  17. Gueguen, A., & Renard, M. (2017). La faisabilite d’une relocalisation des biens et activites face aux risques littoraux a Lacanau. Sciences Eaux & Territoires, 2, n. 23, 26-31. -- -- Disponible en ligne sur (accessed on the 04/07/2018).
  18. Hignett, T.P. (1999). Long-Range Perspectives on Inorganic Fertilizers in Global Agriculture, lecture November 1, 1999. International Fertilizer Development Center, Muscle Shoals, Alabama (usa).
  19. itc (2018) International Trade Center, joint agency of the World Trade Organization and the United Nations. -- www.intracen.org/itc/about/.
  20. Lamine, C., Renting, H., Rossi, A., Wiskerke, J.S.C., & Brunori, G. (2012). Agri-Food systems and territorial development: innovations, new dynamics and changing governance mechanisms. In Darnhofer, I., Gibbon, D., & Dedieu, B. (Eds.), Farming Systems Research into the 21st Century: The New Dynamic. Dordrecht, Netherland: Springer + Business Media.
  21. Loeillet, D. (2018). Ignorance is bliss, but toxic to agriculture. Economia Agro-Alimentare/Food Economy, 20(3), 319-329., 10.3280/ECAG2018-003004DOI: 10.3280/ECAG2018-003004
  22. Loury, R. (2018). Le rechauffement va fragiliser la production mondiale d’electricite. Journal de l’Environnement, 21 juin 2018. -- www.journaldelenvironnement.net/article/le-rechauffement-va-fragiliser-la-production-energetique-mondiale,92326.
  23. Malezieux, E. (2012). Designing cropping systems from nature. Agronomy for Sustainable Development, 32, 15-29.
  24. Martinez Palou, A.M., & Rohner-Thielen, E. (2011). From farm to fork-A statistical journey along the EU’s Food chain. Statistics Eurostat, Statistics in focus, 27, 12. European Union: Eurostat.
  25. Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P., & Hens, L. (2016). Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4, 148.
  26. Paganini, N., Lemke, S., & Raimundo, I. (2018). The potential of urban agriculture towards a more sustainable urban food system in food-insecure neighbourhoods in Cape Town and Maputo. Economia Agro-Alimentare/Food Economy, 20(3), 399-421., 10.3280/ECAG2018-003008DOI: 10.3280/ECAG2018-003008
  27. pipame, Interface Transport, Gerardin Conseil, & let (2009). Logistique et distribution urbaine, Novembre 2009, Rapport du PIPAME, Republique Francaise.
  28. Radanne, P. (2006). Changement climatique et societe(s). Ecologie & Politique, 33, 95-115.
  29. Reboud, X., Blanck, M., Aubertot, J.N., Jeuffroy, M.H., Munier-Jolain, N., & Thiollet-Scholtus, M. (2017). Usages et alternatives au glyphosate dans l’agriculture française. Rapport Inra a la saisine Ref TR507024, 2017.
  30. Servigne, P. (2013). Nourrir l’Europe en temps de crise: vers des systemes alimentaires resilients, Rapport Les Verts/Alliance Libre Europeenne au Parlement Europeen.
  31. Sinai, A. (2013). L’Anthropocene, nouvelle categorie de l’entendement. In Sinai, A. (dir.), Penser la décroissance. Politiques de l’Anthropocène. Paris: Presses de Sciences Po.
  32. Turner, G.M. (2012). On the Cusp of Global Collapse? Updated Comparison of The Limits to Growth with Historical Data. GAIA, 21/2, 116-124.
  33. Van Vuuren, D.P., Bouwman, A.F., & Beusen, A.H.W. (2010). Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion. Global Environmental Change, 20, 428-439.
  34. Visser, J., Nemoto, T., & Browne, M. (2014). Home Delivery and the Impacts on Urban Freight Transport: A Review, Procedia - Social and Behavioral Sciences, 125, 15-27. doi.org/10.1016/j.sbspro.2014.01.1452.
  35. Wakeland, W., Cholette, S., & Venkat, K. (2012). Food transportation issues and reducing carbon footprint. In Boye, J., & Arcand, Y. (Eds.), Green Technologies in Food Production and Processing. Food Engineering Series. Boston: Springer.
  36. Wallerstein, I. (1980). Capitalisme et économie-monde, 1450-1640. Paris: Editions Flammarion.
  37. Wilson, A. (2014). Urine Collection Beats Composting Toilets for Nutrient Recycling; -- www.buildinggreen.com/news-article/urine-collection-beatscomposting-toilets-nutrient-recycling.
  38. Wingert, J.L. (2005). La vie après le pétrole. Paris: Editions Autrement.
  39. Mace, G.M., Norris, K., & Fitter, A.H. (2012). Biodiversity and ecosystem services: a multilayered relationship. Trends in Ecology & Evolution, 27(1), 19-26.

Catherine Macombe, in "ECONOMIA AGRO-ALIMENTARE" 3/2018, pp. 351-370, DOI:10.3280/ECAG2018-003006

   

FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content