Clicca qui per scaricare

What are the effects of sea warming on the fishing industry?
Titolo Rivista: ECONOMIA AGRO-ALIMENTARE 
Autori/Curatori: Antonio Tulone, Antonino Galatia, Salvatore Lupo, Salvatore Tinervia, Maria Crescimanno 
Anno di pubblicazione:  2019 Fascicolo: Lingua: Inglese 
Numero pagine:  17 P. 217-233 Dimensione file:  149 KB
DOI:  10.3280/ECAG2019-002003
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più:  clicca qui   qui 


The paper analyses the impact of Mediterranean Sea warming on some species of small pelagic fish (pesce azzurro) in the Italian fishing industry. In particular, through a time series regression model, the research examines the productivity trend in physical terms of target species of small pelagic fish from 1950 to 2016, considering the Mediterranean Sea Surface Temperatures Anomalies as an indicator of sea warming, and the Western Mediterranean Oscillation index and the North Atlantic Oscillation index as proxies of climatic variability. The research results show an evident link between the reduction of fish availability and sea warming, with potential repercussions on the incomes of the employees in the fishing industry. Our findings provide interesting suggestions and implications on the theoretical, managerial, and political level, providing insights for new researches.


Keywords: Small pelagic fish; Climate change; Jack and horse mackerel; Italian fisheries; Mediterranean Sea.
Jel Code: Q22; Q54

  1. Aguilar Ibarra, A., Sanchez Vargas, A., & Martinez Lopez, B. (2012). Economic Impacts of Climate Change on Two Mexican Coastal Fisheries: Implications to Food Security. Economics, 7(64), 1-20.
  2. Ben-Tuvia, A. (1960). Synopsis of biological data on Sardinella aurita of the Mediterranean sea and other waters. fao Fish Biol Synopsis, 14, 287-312.
  3. Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quere, C., Levitus, S., Nojiri, Y., Shum, C.K., Talley, L.D., &
  4. Unnikrishnan, A. (2007). Observations: Oceanic Climate Change and Sea Level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
  5. Brander, K.M. (2013). Climate and current anthropogenic impacts on fisheries. Climatic Change, 119(1), 9-21.
  6. Brochier, T., Echevin, V., Tam, J., Chaigneau, A., Goubanova, K., & Bertrand, A. (2013). Climate change scenarios experiments predict a future reduction in small pelagic fish recruitment in the Humboldt current system. Global Change Biology, 19, 1841-1853.
  7. Cardinale, M., Osio, G.C., & Scarcella, G. (2017). Mediterranean Sea: A failure of the European fisheries management system. Front. Mar. Sci., 4(72).
  8. Cheung, W.W.L., Close, C., Kearney, K., Lam, V., Sarmiento, J., Watson, R., & Pauly, D. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10, 235-151.
  9. Cheung, W.W.L., Dunne, J., Sarmiento, J.L., & Pauly, D. (2011). Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68, 1008-1018.
  10. Cheung, W.W., Watson, R., & Pauly, D. (2013). Signature of ocean warming in global fisheries catch. Nature, 497, 365-369.
  11. Conservation International (2018). Five Effects of Climate Change on the Ocean. Arlington.
  12. Crescimanno, M., & Galati, A. (2012). The Atlantic bluefin tuna: structure and competitiveness of Italian fishing in the international trade. New Medit, 11(1), 58-64.
  13. Crescimanno, M., Galati, A., & Yahiaoui, D. (2013a). Determinants of Italian agri-food exports in non-EU Mediterranean Partner Countries: An empirical investigation through a gravity model approach. New Medit, 12, 46-54.
  14. Crescimanno, M., Farruggia, D., Galati, A., Siggia, D. (2013b). The intensity of agrifood trade between the countries of the Mediterranean basin. Economia agroalimentare, 15(1), 13-35., 10.3280/ECAG2013-001002DOI: 10.3280/ECAG2013-001002
  15. Dey, M.M., Gosh, K., Valmonte-Santos, R., Rosegrant, M.W., & Li Chen, O. (2016b). Economic impact of climate change and climate change adaptation strategies for fisheries sector in Fiji. Marine Policy, 67, 164-170.
  16. Dey, M.M., Gosh, K., Valmonte-Santos, R., Rosegrant, M.W., & Li Chen, O. (2016c). Economic impact of climate change and climate change adaptation strategies for fisheries sector in Solomon Islands: Implication for food security. Marine Policy, 67, 171-178.
  17. Dey, M.M., Rosegrant, M.W., Gosh, K., Li Chen, O., & Valmonte-Santos, R. (2016a). Analysis of the economic impact of climate change and climate change adaptation strategies for fisheries sector in Pacific coral triangle countries: Model, estimation strategy, and baseline results. Marine Policy, 67, 156-163.
  18. Di Falco, S. (2014). Adaptation to climate change in Sub-Saharan agriculture: Assessing the evidence and rethinking the drivers. European Review of Agricultural Economics, 41(3), 405-430.
  19. Di Falco, S., & Bulte, E. (2013). The Impact of Kinship Networks on the Adoption of Risk-Mitigating Strategies in Ethiopia. World Development, 43, 100-110.
  20. Edwards, M., & Richardson, A.J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430, 881-884.
  21. eea (2019). Sea surface temperature. -- Available at www.eea.europa.eu/data-andmaps/indicators/sea-surface-temperature/sea-surface-temperature-assessmentpublished.
  22. Eide, A. (2008). An integrated study of economic effects of and vulnerabilities to global warming on the Barents Sea cod fisheries. Climatic Change, 87, 251-262.
  23. Eide, A., & Heen, K. (2002). Economic impact of global warming: A study of fishing industry in North Norway. Fisheries Research, 56(3), 261-274., 10.1016/S0165-7836(01)00324-1DOI: 10.1016/S0165-7836(01)00324-1
  24. epa (2018). Climate Change Indicators: Sea Surface Temperature. -- Available at www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature.
  25. fao (2018a). The State of World Fisheries and Aquaculture 2018 – Meeting the sustainable development goals. Rome.
  26. fao (2018b). The State of the Mediterranean and Back Sea Fisheries 2018. General Fisheries Commission for the Mediterranean. Rome.
  27. Fortibuoni, T., Aldighieri, F., Giovanardi, O., Pranovi, F., & Zucchetta, M. (2015). Climate impact on Italian fisheries (Mediterranean Sea). Reg Environ Change, 15, 931-937.
  28. Galati, A., Giacomarra, M., & Crescimanno, M. (2018). Assessing the dynamic of agri-food export trends before and after the EU Eastern Enlargement. In S.M. Riad, Shams, D. Vrontis, Y. Weber, & E. Tsoukatos (Eds). Business Models for Strategic Innovation: Cross-Functional Perspectives (44-57). Routledge., 10.4324/9781351257923-4DOI: 10.4324/9781351257923-4
  29. Galati, A., Miret Pastor, L., Crescimanno, M., Giaimo, R., & Giacomarra, M. (2015). Sustainable European fishery and the Friend of the Sea scheme: tools to achieve sustainable development in the fishery sector. International Journal Of Globalisation And Small Business, 7(3-4), 247-265.
  30. gfcm (2019). gfcm capture production (1970-2015). fao/gfcm. -- Available at www.fao.org/gfcm/data/capture-production-statistics/en/
  31. Grup de Climatologia (2018). La Oscillacio de la Mediterrania Occidental (WeMO). -- Available at www.ub.edu/gc/2016/06/08/wemo/
  32. Hoegh-Guldberg, O., Cai, R., Poloczanska, E.S., Brewer, P.G., Sundby, S., Hilmi, K., Fabry, V.J., & Jung, S. (2014). The Ocean. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
  33. Panel on Climate Change (pp. 1655-1731). Cambridge and New York: Cambridge University Press.
  34. Hurrell, J., & ncar staff (2018). The Climate Data Guide: Hurrell North Atlantic Oscillation (nao) Index (station-based). -- Available at https://climatedataguideucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based.
  35. ipcc (2014a). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press., 10.1017/CBO9781107415379DOI: 10.1017/CBO9781107415379
  36. ipcc (2014b). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press., 10.1017/CBO9781107415386DOI: 10.1017/CBO9781107415386
  37. istat (2019). Valore aggiunto per branca di attivita (milioni di euro). -- Available at http://dati.istat.it/Index.aspx?DataSetCode=DCCN_VAAGSIPET.
  38. Kacic, I. (1984). Gilt sardine (Sardinella aurita Val.) in Adriatic Sea. Nova Thalassia, 6, 371-373.
  39. Lacoue-Labarthe, T., Nunes, P.A.L.D., Ziveri, P., Cinar, M., Gazeau, F., Hall-Spencer, J.M., Hilmi, N., Moschella, P., Safa, A., Sauzade, D., & Turley, C. (2016). Impacts of ocean acidification in a warming Mediterranean Sea: An overview. Regional Studies in Marine Science, 5(1), 1-11.
  40. Lam, V.W.Y., Cheung, W.W.L., & Sumaila, U.R. (2016). Marine capture fisheries in the Arctic: winners or losers under climate change and ocean acidification?. Fish and Fisheries, 17(2), 335-357.
  41. Lam, V.W.Y., Cheung, W.W.L., Swartz, W., & Sumaila, U.R. (2012). Climate change impacts on fisheries in West Africa: Implications for economic, food and nutritional security. African Journal of Marine Science, 34(1), 103-117.
  42. Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C.F., & Perez, T. (2010). Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology & Evolution, 25(3), 250-260.
  43. Lett, C., Ayata, S.D., Huret, M., & Irisson, J.O. (2010). Biophysical modelling to investigate the effects of climate change on marine population dispersal and connectivity. Progress in Oceanography, 87(1-4), 106-113.
  44. Levitus, S., Antonov, J.I., Boyer, T.P., & Stephens, C. (2000). Warming of the world ocean. Science, 287, 2225-2229.
  45. Lopez-Bustins, J.A. (2012). The Unknown Western Mediterranean Oscillation. El Pais. -- Available at https://elpais.com/sociedad/2012/10/02/actualidad/1349193035_901221.html.
  46. Macias, D., Castilla-Espino, D., Garcia-del-Hoyo, J.J., Navarro, G., Catalan, I.A., Renault, L., & Ruiz, J. (2014). Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): A modeling study. Journal of Marine Systems, 135, 150-159.
  47. Marba, N., & Duarte, C.M. (2010). Mediterranean Warming Triggers Seagrass (Posidonia oceanica) Shoot Mortality. Global Change Biology, 16(8), 2366-2375.
  48. Marin, D. (2009). L’azzurro sulla cresta dell’onda. In Origine: Il sapore del territorio italiano (pp. 62-66). Edizioni L’Informatore Agrario. -- Available at www.informatoreagrario.com/ita/Riviste/Origine/09Or02/pesce_azzurro.pdf.
  49. Martin, P., Sabates, A., Lloret, J., & Martin-Vide, J. (2012). Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Climatic Change, 110(3-4), 925-939.
  50. Martin-Vide, J., & Lopez-Bustins, J.A. (2006). The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. International Journal of Climatology, 26, 1455-1475.
  51. Maynou, F., Sabates, A., & Salat, J. (2014). Clues from the recent past to assess recruitment of Mediterranean small pelagic fishes under sea warming scenarios. Climatic Change, 126, 175-188.
  52. Miloslavich, P., Bax, N.J., Simmons, S.E., Klein, E., Appeltans, W., Aburto‐Oropeza, O., Garcia, M.A., Batten, S.D., Benedetti‐Cecchi, L., Checkley Jr, D.M., Chiba, S., Duffy, J.E., Dunn, D.C., Fischer, A., Gunn, J., Kudela, R., Marsac, R., Muller‐
  53. Karger, F.E., Obura, D., & Shin, Y.J. (2018). Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Global Change Biology, 24(6), 2416-2433.
  54. noaa (2018). Anomalies vs. Temperature. -- Available at www.ncdc.noaa.gov/monitoring-references/dyk/anomalies-vs-temperature.
  55. Nurse, L.A. (2011). The implications of global climate change for fisheries management in the Caribbean. Climate and Development, 3(3), 228-241., 10.1080/17565529.2011.603195DOI: 10.1080/17565529.2011.603195
  56. Perry, A.L., Low, P.J., Ellis, J.R., & Reynolds, J.D. (2005). Climate change and distribution shifts in marine fishes. Nature, 308, 1912-1915.
  57. Pranovi, F., Caccin, A., Franzoi, P., Malavasi, S., Zucchetta, M., & Torricelli, P. (2013). Vulnerability of artisanal fisheries to climate change in the Venice Lagoona. Journal of Fish Biology, 83(4), 847-864.
  58. Raicevich, S., Alegret, J.-L., Frangoudes, K., Giovanardi, O., & Fortibuoni, T. (2018). Community-based management of the Mediterranean coastal fisheries: Historical reminiscence or the root for new fisheries governance?. Regional Studies in Marine Science, 21, 86-93.
  59. Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P.S., Riebesell, U., Sheperd, J., Turley, C., & Watson, A. (2005). Ocean Acidification due to Increasing Atmospheric Carbon Dioxide. London: The Royal Society.
  60. Rebecca, G.A., Cheung, W.W.L., & Reygondeau, G. (2017). Future marine ecosystem drivers, biodiversity, and fisheries maximum catch potential in Pacific Island countries and territories under climate change. Marine Policy, 88, 285-294.
  61. Rodrigues, L.C., van den Bergh, J.C.J.M., & Ghermandi, A. (2013). Socio-economic impacts of ocean acidification in the Mediterranean Sea. Marine Policy, 38, 447-456.
  62. Rosegrant, M.W., Dey, M.M., Valmonte-Santos, R., & Li Chen, O. (2016). Economic impacts of climate change and climate change adaptation strategies in Vanuatu and Timor-Leste. Marine Policy, 67(1), 179-188.
  63. Sabates, A., Martin, P., Lloret, J., & Raya, V. (2006). Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Global Change Biology, 12, 2209-2219.
  64. Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A.,
  65. Ono, T., & Rios, A. F. (2004). The Oceanic Sink for Anthropogenic CO2. Science, 305(5682), 367-371.
  66. Schroeder, K., Chiggiato, J., Josey, S. A., Borghini, M., Aracri, S., & Sparnocchia, S. (2017). Rapid response to climate change in a marginal sea. Scientific Reports, 7.
  67. Seung, C., & Ianelli, J. (2016). Regional impacts of climate change: A computable general equilibrium analysis for an Alaska fishery. Natural Resource Modeling, 29(2), 289-333.
  68. Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S., & Lima, M.
  69. 2002). Ecological effects of climate fluctuations. Science, 297, 1292-1296.
  70. Stergiou, K.I., Somarakis, S., Triantafyllou, G., Tsiaras, K.P., Giannoulaki, M., Petihakis, G., Machias, A., & Tsikliras, A.C. (2016). Trends in productivity and biomass yields in the Mediterranean Sea Large Marine Ecosystem during climate change. Environmental Development, 17(1), 57-74.
  71. Sumaila, U.R., Cheung, W.W.L., Lam, V.W.Y., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1, 449-456.
  72. Teixeira, C.M., Gamito, R., Leitao, F., Cabral, H.N., Erzini, K., & Costa, M.J. (2014). Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg Environ Change, 14(2), 657-669.
  73. Thogersen, T., Hoff, A., & Frost, H. (2015). Fisheries management responses to climate change in the Baltic Sea. Climate Risk Management, 10, 51-62.
  74. Tsikliras, A.C. (2008). Climate-related geographic shift and sudden population increase of a small pelagic fish (Sardinella aurita) in the eastern Mediterranean Sea. Marine Biology Research, 4(6), 477-481., 10.1080/17451000802291292DOI: 10.1080/17451000802291292
  75. Tsikliras, A.C., & Froese, R. (2019). Maximum Sustainable Yield. Encyclopedia of Ecology (Second Edition), 1, 108-115., 10.1016/B978-0-12-409548-9.10601-3DOI: 10.1016/B978-0-12-409548-9.10601-3
  76. Tull, M., Metcalf, S.J., & Gray, H. (2016). The economic and social impacts of environmental change on fishing towns and coastal communities: A historical case study of Geraldton, Western Australia. ICES Journal of Marine Science, 73(5), 1437-1446.
  77. Walther, G., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T.J.C., Fromentin, J., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416, 389-395.
  78. Worm, B., & Lotze, H.K. (2016). Marine Biodiversity and Climate Change. In T. Letcher (Ed.), Climate Change: Observed Impacts on Planet Earth (Second Edition) (pp. 195-212). Mason: South-Western Pub., 10.1016/B978-0-444-63524-2.00013-0DOI: 10.1016/B978-0-444-63524-2.00013-0

Antonio Tulone, Antonino Galatia, Salvatore Lupo, Salvatore Tinervia, Maria Crescimanno, in "ECONOMIA AGRO-ALIMENTARE" 2/2019, pp. 217-233, DOI:10.3280/ECAG2019-002003

   

FrancoAngeli è membro della Publishers International Linking Association associazione indipendente e no profit per facilitare l'accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche