Click here to download

Factors influencing cereals yield in Polish agriculture
Author/s: Ludwik Wicki, Hanna Dudek 
Year:  2019 Issue: Language: English 
Pages:  14 Pg. 793-806 FullText PDF:  444 KB
DOI:  10.3280/ECAG2019-003012
(DOI is like a bar code for intellectual property: to have more infomation:  clicca qui   and here 

The aim of the paper is to evaluate the relative importance of the selected inputs for cereals yields in Poland, especially the importance of certified seed. The following data have been used in research: inputs of artificial fertilizers per hectare, consumption of pesticides per hectare, certified seeds per hectare and average soil quality. All data were calculate for provinces level for each year in the period 2000-2017. The patterns of source of productivity were investigated using two methods: interpretation of estimated parameters in Cobb-Douglas production function and analysis of squared semipartial correlations. The results from both methods applied in the research are similar. The paper argues that the least "pure impact" is connected with certified seeds, medium impact to chemical originated inputs (fertilizers and pesticides) and the largest impact - to soil quality. The findings of the study indicates that: - pure impact of "certified seeds" is 7%; - impact of chemical origin inputs is circa 30% - (influence of pesticides and artificial fertilizers are not to be separated because its strongly depend each other); - pure impact of "soil quality" - about 60%. Domination of chemical inputs in yield formation is visible. It was also stated, that interaction of four inputs constitute from 35 to 62% of total influence on cereals yield. From this perspective it can be concluded that level of all other inputs have to be adequate to soil conditions and one of most important factor is interaction between variety, soil and fertilizing.
Keywords: Cereals production in Poland, biological progress, squared semipartial correlations method.
Jel Code: D24, Q12, Q16

  1. Wicki, L. (2016). Wykorzystanie potencjału plonowania zboż w produkcji rolniczej w Polsce. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa I Agrobiznesu, 18(5), 267-273.
  2. Ates, S., Cicek, H., Gultekin, I., Yigezu, Y.A., Keser, M. & Filley, S.J. (2018). Bioeconomic analysis of dual-purpose management of winter cereals in high and low input production systems. Field Crops Research, 227, 56-66.
  3. Baran, J. (2014). Regionalne zrożnicowanie efektywności rolnictwa w Polsce. Roczniki Naukowe Ekonomii Rolnictwa i Rozwoju Obszarów Wiejskich, 101(2), 20-28.
  4. Biskupski, A., Kaus, A., Włodek, S. & Pabin, J. (2007). Zrożnicowane nawożenie azotem a plonowanie i wybrane wskaźniki architektury łanu kilku odmian pszenicy jarej. Inżynieria Rolnicza, 11, 29-36.
  5. Błażejczyk-Majka, L. & Kala, R. (2005). The effect of technical change in French agriculture, 1980-1999. Electronic Journal of Polish Agricultural Universities. Economics, 8(3).
  6. Burczyk, H. (2011). Przydatność zboż na potrzeby produkcji energii odnawialnej w świetle wynikow doświadczeń. Problemy Inżynierii Rolniczej, 19, 43-51. Choudhary M., Jat, H.S., Datta, A., Yadav, A.K., Sapkota, T.B., Mondal, S., … & Jat, M.L. (2018). Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems, Applied Soil Ecology, 126, 189-198,
  7. Day, K. & Klotz-Ingram, C. (1997). Agricultural Technology Development. In Agricultural Resources and Environmental Indicators, 1996-97. usda Washington DC. Economic Research Service, Natural Resources and Environment Division. Agricultural Handbook, 712, 241-254.
  8. Day-Rubenstein, K., Heisey, P., Shoemaker, R., Sullivan, J. & Friosvold, G. (2005). Crop Genetic resources. An Economic Apraisal. Economic Information Biulletin, 2, usda, Washington DC.
  9. Deppermann, A., Balkovič, J., Bundle, S.C., Di Fulvio, F., Havlik, P., Leclere, D.,.. & Schepaschenko, D. (2018). Increasing crop production in Russia and Ukraine - regional and global impacts from intensification and recultivation. Environmental Research Letters, 13(2), 025008,
  10. Drejerska, N. & Chrzanowska, M. (2017). Sectoral employment diversification in rural areas across Polish subregions. Roczniki Naukowe Ekonomii Rolnictwa I Rozwoju Obszarów Wiejskich, 104(4), 28-36., DOI: 10.22630/RNR.2017.104.4.30
  11. Duvick, D. (2005). The Contribution of Breeding to Yield Advances in Maize (Zea Mays L.). Advances in Agronomy, 86, 83-145., DOI: 10.1016/S0065-2113(05)86002-X
  12. Esposti, R. (2000). Stochastic Technical Change and Procyclical tfp The case of Italian agriculture. Journal of Productivity Analysis, 14(2), 119-141., DOI: 10.1023/A:1007846907896
  13. Evenson, R. (1994). Analyzing the Transfer of Agricultural Technology. In J.R. Anderson (Ed.), Agricultural Technology: Policy Issues for the International Community (pp. 165-207). Centre for Agriculture and Biosciences International, World Bank.
  14. Fernandez-Cornejo, J. (2004). The Seed Industry in U.S. Agriculture. Agriculture Information Bulletin, 786. usda Washington DC.
  15. Garcia-Leon, D., Contreras, S. & Hunink, J. (2019). Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals. Agricultural Water Management, 213, 388-396.
  16. Heisey, P. & Day-Rubenstein, K. (2015). Using Crop Genetic Resources to Help Agriculture Adapt to Climate Change: Economics and Policy (April 1, 2015). usda-ers Economic Information Bulletin, 139.
  17. Karagiannis, G. & Furtan, H. (1990). Induced Innovation in Canadian Agriculture: 1926-87. Canadian Journal of Agricultural Economics, 38(1), 1-21.
  18. Kraciuk, J. (2018). Bezpieczeństwo żywnościowe Polski na tle wybranych krajow Europy Wschodniej. Zeszyty Naukowe sggw - Ekonomika i Organizacja Gospodarki Żywnościowej, 121, 41-53., DOI: 10.22630/EIOGZ.2018.121.3
  19. Lavorato, M.P. & Braga, M.J. (2018). Risk and return of soybeans precision production: a case study in Mato Grosso do Sul state, Brazil. Italian Review of Agricultural Economics, 73(1), 27-36.
  20. Mehmetoglu, M. & Jakobsen, T. (2017). Applied Statistics using Stata. A Guide for Social Sciences. London: sage Publications Ltd.
  21. Meyers, L.S., Gamst, G. & Guarino, A.J. (2006). Applied Multivariate Research: Design and Interpretation. London: Sage Publications Ltd.
  22. Nalborczyk, E. (1997). Postęp biologiczny a rozwoj rolnictwa w końcu XX I początkach XXI stulecia. Agricola, 33 - suplement.
  23. Neumann, K., Verburg, P.H., Stehfest, E. & Muller, Ch. (2010). The yield gap of global grain production: A spatial analysis. Agricultural Systems, 103(5), 316-326,
  24. Roger, P. & Palle, M. (2007). Farm saved seeds in France, Spain and Portugal. Community Plant Variety Office - Conference: Enforcement of plant variety rights in the Community. Madrid 22-23.02.2007. -- access:
  25. Rybka, K., & Nita, Z. (2014). Nowoczesne fenotypy zboż do uprawy na obszarach zagrożonych suszą. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 273, 55-72.
  26. Schils, R., Olesen, J., Kersebaum, K-Ch., Rijk, B. Oberforster, M., Kalyada, V., … & van Ittersum, M. (2018). Cereal yield gaps across Europe. European Journal of Agronomy, 101, 109-120.
  27. Silva, F.F., Braga, M.J. & Garcia, J.C. (2018). Link between R&D intensity and market concentration: analysis of Brazilian corn and soybean seed markets. Italian Review of Agricultural Economics, 73(2), 105-124., DOI: 10.13128/REA-24078
  28. Thirtle, C. (1995). Technological Change and the Productivity Slowdown in Field Crops: United States, 1939-78. Southern Journal of Agricultural Economics, 17(Dec.), 33-42., DOI: 10.1017/S0081305200025036
  29. Thirtle, C. (1985). Accounting for Increasing Land-Labour Ratios in Developed Country Agriculture. Journal of Agricultural Economics, 36(2), 161-169.
  30. Usowicz, B. & Lipiec, J. (2017). Spatial variability of soil properties and cereal yield in a cultivated field on sandy soil. Soil and Tillage Research, 174, 241-250.
  31. Villarroel, A. (2007). Problems faced by breeders. Conference: Enforcement of plant variety rights in the Community, Madrid 22-23.02.2007. -- access:
  32. Wicka, A. (2018). Crop Insurance With Subsidies in Poland - Do It Works?. Economic Science for Rural Development, 49, 178-186,, DOI: 10.22616/ESRD.2018.134
  33. Wicki, L. & Wicka, A. (2016). Bio-economy sector in Poland and its importance in the economy. Economic Science for Rural Development, 41, 219-228.
  34. Wicki, L. (2007). Wpływ postępu biologicznego na plonowanie i ekonomikę produkcji zboż ozimych. Roczniki Nauk Rolniczych seria G – Ekonomika Rolnictwa, 94(1), 74-85.
  35. Wicki, L. & Dudek, H. (2009). Factors influencing productivity of cereals in Polish agriculture. Economic Science for Rural Development, Proceedings of the International Scientific Conference Jelgava 2009, 20, 79-88. Wicki, L. (2017). Poziom i zakres wsparcia upowszechniania postępu biologicznego w produkcji roślinnej w ramach działań Agencji Rynku Rolnego. Zeszyty Naukowe sggw, Polityki Europejskie, Finanse i Marketing, 18(67), 259-271., DOI: 10.22630/PEFIM.2017.18.67.38
  36. Wicki, L. (2018). The Role of Productivity Growth in Agricultural Production Development in the Central and Eastern Europe Countries After 1991. Economic Science for Rural Development, 47, 514-523., DOI: 10.22616/ESRD.2018.060
  37. Witek, T. (Ed.) (1981). Waloryzacja rolniczej przestrzeni produkcyjnej Polski wg gmin. iung Puławy.
  38. Woś, A. (1995). Ekonomika odnawialnych zasobów naturalnych. Wydawnictwo Naukowe pwn. Warszawa.

Ludwik Wicki, Hanna Dudek, in "ECONOMIA AGRO-ALIMENTARE" 3/2019, pp. 793-806, DOI:10.3280/ECAG2019-003012


FrancoAngeli is a member of Publishers International Linking Association a not for profit orgasnization wich runs the CrossRef service, enabing links to and from online scholarly content