Households’ preferences for wood in home heating systems: Does sustainability matter?

Titolo Rivista ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Autori/Curatori Stefania Troiano, Veronica Novelli, Paola Geatti, Matteo Carzedda, Francesco Marangon, Luciano Ceccon
Anno di pubblicazione 2022 Fascicolo 2021/2 Lingua Inglese
Numero pagine 20 P. 101-120 Dimensione file 162 KB
DOI 10.3280/EFE2021-002005
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

This study investigates the preferences of Italian home-owners when choosing to buy wood for home heating systems. The focus is on understanding the influence of different dimensions of sustainability on consumer choices. For this purpose, we designed a survey including a discrete choice experiment and administered it to residents in Italy. Our findings reveal that, on average, respondents pay particular attention to wood cultivation systems. However, forest property regime was considered second in terms of importance after wood price. Further analysis found that our sample presents four clusters of wood consumers. These findings showed considerable heterogeneity among respondents, the majority of whom considered important wood cultivation practices and appreciated forest landscape beauties for their decision. Local origin of wood was considered important by the majority of respondents, even if, surprisingly, a group of interviewees preferred foreign wood. To achieve better results and effectiveness in improving sustainable practices of the domestic heating systems, a combination of policies should be used simultaneously. Our results support the hypothesis that policymakers could achieve better results in terms of sustainability by applying a combined policy that levers the importance citizens accord to the different characteristics of wood in home heating systems.

Keywords:wood, choice experiment, domestic heating, renewable energy sources, sustainable consumption and production

Jel codes:Q23, Q4, Q40

  1. PINIEC (Piano Nazionale Integrato Energia e Clima – Energy and Climate Integrated National Plan) (2019) -- https://www.mise.gov.it/images/stories/documenti/PNIEC_finale_17012020.pdf.
  2. Rouvinen, S. & Matero, J. (2013). Stated preferences of Finnish private homeowners for residential heating systems: A discrete choice experiment. Biomass and Bioenergy, 57, 22-32.
  3. Ruokamo, E. (2016). Household preferences of hybrid home heating systems – A choice experiment application. Energy Policy, 95, 224-237.
  4. Scarpa, R. & Willis, K. (2010). Willingness-to-pay for renewable energy: Primary and discretionary choice of British households’ for micro-generation technologies. Energy Economics, 32(1), 129-136.
  5. Sharma, A. K. & Thakur, N. S. (2017). Energy situation, current status and resource potential of run of the river (RoR) large hydro power projects in Jammu and Kashmir: India. Renewable and Sustainable Energy Reviews, 78, 233-251.
  6. Solli, C., Reenaas, M., Strømman, A. & Hertwich, E. (2009). Life cycle assessment of woodbased heating in Norway. The International Journal of Life Cycle Assessment, 14, 517-528.
  7. Topcu, Y. I. & Ulengin, F. (2004). Energy for the future: an integrated decision aid for the case of Turkey. Energy, 29(1), 137-154.
  8. UNECE (2021). Code of good practice for wood-burning and small combustion installations -- https://unece.org/sites/default/files/2021-08/2107194_Inside_EN_pdf%20web.pdf.
  9. Uzun, N. & Sağlam, N. (2006). Environmental attitude scale for high school students. Journal of Hacettepe Education Faculty, 30, 240-250.
  10. Virdis, M. R., Gaeta, M., Ciorba, U. & D’Elia, I. (eds.) (2017). Impatti energetici e ambientali dei combustibili nel riscaldamento residenziale. ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile -- https://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/v2017-impatti-combustibili-nel-riscaldamento.pdf.
  11. Wielgosiński, G., Łechtańska, P. & Namiecińska, O. (2017). Emission of some pollutants from biomass combustion in comparison to hard coal combustion. Journal of the Energy Institute, 90(5), 787-796.
  12. Zhang, J., Smith, K. R., Ma, Y., Ye, S., Jiang, F., Qi, W., Liu, P., Khalil, M. A. K., Rasmussen, R. A. & Thorneloè, S. A. (2000). Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors. Atmospheric Environment, 34, 4537-4549.
  13. Achtnicht, M. (2011). Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany. Ecological Economics, 70(11), 2191-2200.
  14. Adamowicz, W., Boxall, P., Williams, M. & Louviere, J. (1998). Stated preferences approaches to measuring passive use values. American Journal of Agricultural Economics, 80, 64-75. DOI: 10.2307/3180269
  15. Adamowicz, W., Louviere, J. & Williams, M. (1994). Combining revealed and stated preference methods for valuing environmental amenities. Journal of Environmental Economics and Management, 26, 271-292.
  16. Allen, A., Milenica, D. & Sikorac, P. (2003). Shallow gravel aquifers and the urban ‘heat island’ effect: a source of low enthalpy geothermal energy. Geothermics, 32(2003), 569-578.
  17. Arcury, T. A. (1990). Environmental attitude and environmental knowledge. Human Organization, 49(4), 300-304.
  18. ARPA FVG (2012). Dal legno al fuoco, come ottenere una buona combustione domestica e migliorare la qualità dell’aria -- http://www.arpa.fvg.it/export/sites/default/tema/aria/utilita/Documenti_e_presentazioni/sintesi_divulgative_docs/brochure_legna.pdf.
  19. ARPA Lombardia (2018). Inventario per l’anno 2014 -- www.inemar.eu.
  20. Balat, M. (2005). Usage of energy sources and environmental problems. Energy Exploration and Exploitation, 23(2), 141-167. DOI: 10.1260/0144598054530011
  21. Bilgen, S., Keles, S., Kaygusuz, A., Sarı, A. & Kaygusuz, K. (2008). Global warming and renewable energy sources for sustainable development: a case study in Turkey. Renewable and Sustainable Energy Reviews, 12(2), 372-396.
  22. Bølling, A. K., Pagels, J., Yttri, K. E., Barregard, L., Sallsten, G., Schwarze, P. E. & Boman, C. (2009). Health effects of residential wood smoke particles: the importance of combustion conditions and physicochemical particle properties. Particle and Fibre Toxicology, 6(1), 29. DOI: 10.1186/1743-8977-6-29
  23. Botterill, L. C. & Cockfield, G. (2016). The relative importance of landscape amenity and health impacts in the wind farm debate in Australia. Journal of Environmental Policy & Planning, 18(4), 447-462.
  24. Boxall, P. C., Adamowicz, W. L., Swait, J., Williams, M. & Louviere, J. (1996). A comparison of stated preference methods for environmental valuation. Ecological Economics, 18(3), 243-253.
  25. Brunner, T., Obernberger, I. & Scharler, R. (2009). Primary Measures for Low-Emission Residential Wood Combustion – Comparison of Old with Optimised Modern Systems. Proceedings of the 17th European Biomass Conference & Exhibition, June 2009, Hamburg, Germany.
  26. Butt, E. W., Turnock, S. T., Rigby, R., Reddington, C. L., Yoshioka, M., Johnson, J. S. ... & Spracklen, D. V. (2017). Global and regional trends in particulate air pollution and attributable health burden over the past 50 years. Environmental Research Letters, 12(10), 104017.
  27. Caserini, S., Fraccaroli, A., Monguzzi, A., Moretti, M. & Angelino; E. (eds.) (2008). Stima dei Consumi di Legna da Ardere per Riscaldamento ed Uso Domestico in Italia – APAT, ARPA Lombardia -- https://www.isprambiente.gov.it/contentfiles/00004100/4156-stimadei-consumi-di-legna-da-ardere.pdf.
  28. Caserini, S. (2018). La combustione di legna in piccoli apparecchi domestici: impatto sulla qualità dell’aia e strategie di riduzione. Ingegneria dell’Ambiente, 5(2), 127-134.
  29. Cathles, L. M., Brown, L., Taam, M. & Hunter, A. (2012). A commentary on “The greenhouse gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro and A. Ingraffea. Climatic Change, 113(2), 525-535.
  30. Cohen, A. J., Brauer, M., Burnett R. et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389, 1907-1918.
  31. D’Amato, G., Cecchi, L., D’Amato, M. & Liccardi, G. (2010). Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update. Journal of Investigational Allergology and Clinical Immunology, 20(2), 95-102.
  32. De Carli, A., Carli, A. D., Goltara, A., Massarutto, A. & Pontoni, F. (2015). Hydropower production and environmental regulation: opting for a performance-based tax approach. Economics and policy of energy and the environment, 2, 137-152. DOI: 10.3280/EFE2014-002007
  33. Demirbas, M. F. (2007). Electricity production using solar energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2007, 29(6), 563-9.
  34. Destouni, G. & Frank, H. (2010). Renewable Energy. AMBIO: A Journal of the Human Environment, 39(S1), 18-21.
  35. Di Marzio, G., Angelini, L., Price, W., Chin, C. & Harris, S. (2015). The Stillwater Triple Hybrid Power Plant: Integrating Geothermal, Solar Photovoltaic and Solar Thermal Power Generation, Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April.
  36. Duca, D., Riva, G., Foppa Pedretti, E. & Toscano, G. (2014). Wood pellet quality with respect to EN 14961-2 standard and certifications. Fuel, 135, 9-14.
  37. Eagly, A. H. & Chaiken, S. (1993). The psychology of attitudes. (Orlando, FL, US: Harcourt Brace Jovanovich College Publishers).
  38. ENEA (2010). Le fonti rinnovabili 2010. Ricerca e Innovazione per un futuro low carbon. Scheda tecnologica BIOMASSE TERMICHE. ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile -- htts://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/2010/v2010_07-fontirinnovabili.pdf.
  39. European Commission (2008). Special Eurobarometer, Attitudes of European citizens towards the environment. European Commission -- https://ec.europa.eu/environment/eurobarometers_en.htm.
  40. European Commission (2020). Attitudes of European Citizens towards the Environment -- https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/ResultDoc/download/DocumentKy/ 89801.
  41. Grigg, J. (2009). Particulate Matter Exposure in Children Relevance to Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 6(7), 564-569.
  42. Healion, K. (2002). Wood as renewable source of energy. Socio-Economic Aspects of Forestry N°1, Coford Connects -- http://www.seai.ie/Renewables/Bioenergy/Wood_as_a_renewable_energy_source.pdf.
  43. Hensher, D. A., Rose, J. M., Rose, J. M. & Greene, W. H. (2005). Applied choice analysis: a primer. (Cambridge, UK: Cambridge University Press).
  44. Houghton, J. (2004). Global Warming. The Complete Briefing. Third Edition, (New York: Cambridge University Press).
  45. Huang, Y., Rezvani, S., McIlveen-Wright, D., Minchener, A. & Hewitt, N. (2008). Technoeconomic
  46. study of CO2 capture and storage in coal fired oxygen fed entrained flow IGCC power plants. Fuel Process Technology, 89(9), 916-925.
  47. ISTAT (2014). I consumi energetici delle famiglie – anno 2013. Report. -- http://www.istat.it/it/archivio/142173.
  48. ISTAT (2021). Censimento della popolazione e dinamica demografica – anno 2020. -- https://www.istat.it/it/archivio/264511.
  49. Jacob, D. J. & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43, 51-63. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132-157.
  50. Life prepAir (2018). Progetto prepAir 2017-2024, Brucia bene la legna. Non bruciarti la salute -- http://www.lifeprepair.eu/wp-content/uploads/2018/12/brochure_biomasse_5_WEB.pdf.
  51. Lohwasser, R. & Madlener, R. (2012). Economics of CCS for coal plants: impact of investment costs and efficiency on market diffusion in Europe. Energy Economics, 34(3), 850-863.
  52. Louviere, J. J., Hensher, D. A. & Swait, J. D. (2000). Stated Choice Methods: Analysis and Applications. (Cambridge, UK: Cambridge University Press).
  53. McFadden, D. (1974). The measurement of urban travel demand. Journal of Public Economics, 3(4), 303-328. DOI: 10.1016/0047-2727(74)90003-6
  54. Miller, B. G. (2011). Clean Coal Technologies for Advanced Power Generation (CHAPTER). Clean Coal Engineering Technology, 251-300.
  55. MIPAAF (2019). RaF ITALIA 2017-2018 – Rapporto sullo stato delle foreste e del settore forestale in Italia -- http://www.associazioneforestaleitaliana.eu/wp-content/uploads/2019/03/RAF_Italia_2019.pdf.
  56. Monforti, F., Huld, T., Bodis, K., Vitali, L., D’Isidoro, M. & Lacal-Arantegui, R. (2014).
  57. Assessing complementary of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renewable Energy, 63, 576-586.
  58. Otto, S. & Pensini, P. (2017). Nature-based environmental education of children: Environmental knowledge and connectedness to nature, together, are related to ecological behaviour. Global Environmental Change, 47, 88-94.
  59. Paço, A. & Lavrador, T. (2017). Environmental knowledge and attitudes and behaviours towards energy consumption. Journal of Environmental Management, 197, 384-392.
  60. Pellizzone, A., Allansdottir, A., De Franco, R., Muttonia, G. & Manzella, A. (2017). Geothermal
  61. energy and the public: A case study on deliberative citizens’ engagement in central Italy. Energy Policy, 101, 561-570.

Stefania Troiano, Veronica Novelli, Paola Geatti, Matteo Carzedda, Francesco Marangon, Luciano Ceccon, Households’ preferences for wood in home heating systems: Does sustainability matter? in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 2/2021, pp 101-120, DOI: 10.3280/EFE2021-002005