Il ruolo del sistema periodico degli elementi nel caratterizzare la chimica classica come teoria scientifica

Journal title EPISTEMOLOGIA
Author/s Antonio Drago
Publishing Year 2014 Issue 2014/1 Language Italian
Pages 21 P. 37-57 File size 647 KB
DOI 10.3280/EPIS2014-001003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The role of the periodic system of the elements in the characterisation of Classical Chemistry as a scientific theory. In classical Chemistry the theoretical role of the periodic table is controversial; possible answers are an empirical law, a theory, a classificatory system, etc.. The question is not easy also because a commonly shared definition of a scientific theory is lacking. The present paper proposes a solution to the former question by assuming a new definition of a scientific theory: It is an experimental conception which is founded upon two dichotomic options; one option is on the kind of mathematics - either the classical one or the constructive one; the other option is on the kind of organisation - either the deductive one or the organisation aimed at solving a basic problem; equivalently, the kind of logic - either classical logic or non-classical logic. Since its beginnings, Chemistry made use of a mathematical theory at the lowest level as possible and moreover it argued in a way which here is recognised to be of non-classical logic. Later the discovery by Mendeleev of the table of the elements gave to Chemistry the full status of a scientific theory through two accurate choices on the above-mentioned options. Indeed, after having introduced the mathematics of rational numbers through the representation of the atomic weights, this table relied in an essential way on a basic parameter, the atomic number, whose values introduces a kind of recursive arithmetic. Moreover, this table made clear that Chemistry is organised in order to solve the problem of how many are the elements of matter; the solution is based on the periodicity of the table, which is obtained by arguing through analogies among the elements, i.e. by arguing through non-classical logic. In the history of science, Chemistry relied on these two choices which were the alternative ones to those of the dominant physical theory, i.e. in a first time Newtonian mechanics, then quantum mechanics. These differences in the choices generate radical variations in the meanings of the common notions (e.g., space, matter, etc.) and an incommensurability phenomenon even in the basic philosophy. The paper concludes that in the history of science classical Chemistry played the role of a radical alternative to the dominant physical theories under all aspects, i.e. the basic notions, the way of reasoning, the kind of theory organisation, the kind of mathematics and even the kind of philosophy. In the past, rather to recognise this novelty, it was maintained a pre-conception - i.e., Chemistry is an "immature" theory - which refrained philosophers of science to ponder on the basic features of the whole set of the scientific theories.

Keywords: Chemistry, Mendeleev’s Table, problem-based organization, non-classical logic

  1. Bachelard G. (1932). Le pluralisme cohérente de la chimie moderne, Paris, Vrin.
  2. Bachelard G. (1962). La philosophie du Non, Paris, PUF (trad. it. La filosofia del no, Catania, Pellicanolibri, 1978).
  3. Baird D. et al. (eds.) (2006). Philosophy of Chemistry, BSPS n. 242, Dordrecht, Reidel.
  4. Barnes E. (2005). On Mendeleev’s predictions: comment on Scerri and Worrall, Stud. Hist. Phil. Sci., 36, pp. 801-812.
  5. Bauer C., Drago A. (2005). Didattica della chimica e fondamenti della scienza, Atti XI Conv. Naz. St. e Fond. della Chimica, Rend. Acc. Naz. Sci. dei XL, 29, pp. 353-364.
  6. Van Camp W. (2011). Principle theories, constructive theories, and explanation in modern physics, Stud. Hist. Phil. Modern Sci., 42, pp. 23-31.
  7. Carnot L. (1813). Réflexions sur la métaphysique du calcul differentiel, Paris, Courcier.
  8. Carnot S. (1824). Réflexions sur la puissance motrice du feu, Paris, Bachelard.
  9. Cassirer E. (1952). Storia della Filosofia Moderna, Torino, Einaudi.
  10. Comte A. (1835-1852). Cours de Philosophie positive, Paris, Rouen.
  11. Drago A. (1987). La chimica classica come esempio di teoria organizzata su un problema centrale, Atti II Congr. Naz. St. e Fond. della Chimica, Rend. Acc. Naz. Sci. dei XL, 12, pp. 315-326.
  12. Drago A. (1991). Le due opzioni. Per una storia popolare della scienza, Molfetta, La Meridiana.
  13. Drago A. (1995). Il caso della teoria chimica come rivelatore dei limiti della interpretazione strutturalista della scienza. Atti VI Conv. Naz. Storia e Fond. Chimica, Rend. Acc. Naz. Sci. dei XL, 19, pp. 269-285.
  14. Drago A. (1997). La incommensurabilità strutturista della chimica rispetto alla fisica, Atti VII Conv. Naz. Storia e Fond. Chimica, Rend. Acc. Naz. Sci. dei XL, 21, pp. 273-287.
  15. Drago A. (2007a). There exist two models of organization of a scientific theory, Atti della Fond. G. Ronchi, 62, pp. 839-856.
  16. Drago A. (2007b). La maniera di ragionare di Lavoisier, Dalton ed Avogadro durante la nascita della teoria chimica, Rend. XII Acc. Naz, Sci. dei XL, 31, pp. 189-201.
  17. Drago A. (2009). Nicolò Cusano e la Chimica classica, Atti XIII Congr. Naz. Storia e Fond. Chimica, Rend. Acc. Naz. delle Sci. dei XL, 33, pp. 91-104.
  18. Drago A. (2012a). Pluralism in Logic: The Square of Opposition, Leibniz’ Principle of Sufficient Reason and Markov’s principle. In Béziau J.-Y., Jacquette D. (eds.), Around and Beyond the Square of Opposition, Basel, Birkhaueser, pp. 175-189.
  19. Drago A. (2012b). The Emerging of Two Options from Einstein’s First Paper on Quanta. In Pisano R., Capecchi D., Lukešová A. (eds.). Physics, Astronomy and Engineering. Critical Problems in the History of Science and Society, Berlin, Springer, pp. 227-234.
  20. Drago A., Oliva R. (1999). Atomism and the reasoning by non-classical logic, HYLE, 5, pp. 43-55.
  21. Drago A., Perno A. (2004). La teoria geometrica delle parallele impostata coerentemente su un problema (I), Per. Matem., serie VIII, 4, pp. 41-52.
  22. Drago A., Pisano R. (2000). Interpretazione e ricostruzione delle Réflexions di Sadi Carnot mediante la logica non classica, Giornale di Fisica, 41, pp. 195-215.
  23. Drago A., Venezia A. (2007). Popper’s falsificationism interpreted by non-classical logic, Epistemologia, 30(2), pp. 235-264.
  24. Dummett M. (1977). Principles of Intuitionism, Oxford, Clarendon Press.
  25. Einstein A. (1934). Idee ed opinioni, Milano, Newton Compton.
  26. Hettema T., Kuipers A.F. (1988). The Periodic Table. Its formalization, Status and Relationship in Atomic Theory, Erkenntnis, 28, pp. 387-408.
  27. Kaji M. (2002). Mendeleev concept of chemical elements and ‘The Principles of Chemistry’, Bull. Hist. Chem., 27, pp. 4-16.
  28. Kant I. (1786). Metaphysischen Anfangsgründe der Naturwissenschaft, Riga, Johann Friedrich Hartknoch (trad it. Primi principi metafisici della Scienza della Natura, Bologna, Cappelli, 1959).
  29. Kuhn T.S. (1962). The Structure of Scientific Revolutions, Chicago, Chicago University Press (trad. it. 1969, La struttura delle rivoluzioni scientifiche, Torino, Einaudi).
  30. Kultgen J.H. (1958). Philosophic conception in Mendeleev’s ‘Principles of Chemistry’, Philosophy of Science, 25, pp. 177-183.
  31. Laing M. (1999). The Four-fold Way of Chemistry, Education in Chemistry, 36, pp. 11-13.
  32. Lavoisier P.L. (1789). Traité élémentaire de la Chimie, Paris. Cuchet.
  33. Lombardi O., Labarca M. (2005). The ontological autonomy of the chemical world, Found. Chemistry, 7, pp. 125-148.
  34. McIntyre L. (2007). Emergence and reduction in chemistry: ontological or epistemological concepts?, Synthese, 155, pp. 337-343.
  35. Mendeleev D.I. (1871a). Periodičeskaja zakonnost’ himičeskih elementov, Liebig’s Annalen, vol. VIII, fascicolo 2, pp. 133-229 (tr. it. La legge della periodicità degli elementi chimici. In Mendeleev D.I. (2004), Il sistema periodico degli elementi, Roma, Teknos, pp. 27-97).
  36. Mendeleev D.I. (1871). Osnovy himii, Sankt Peterburg (in russo).
  37. Mendeleev D.I. (1871b). Principes de Chimie, Paris, Tignol, 1892.
  38. Mendeleev D.I. (1889). The periodic law of the chemical elements, Journal of the Chemical Society, vol. LV, pp. 636-689 (tr. it. La legge periodica degli elementi chimici, in Mendeleev
  39. D.I. (2004), Il sistema periodico degli elementi, Roma, Teknos, pp. 99-127).
  40. Mendeleev D.I. (1871). Principles of Chemistry, New York, Longmans (ed. 1902).
  41. Meyerson E. (1927). De l’éxplication dans les sciences, Paris, Fayard (ed. 1995).
  42. Niaz M. et al. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table, Stud. Hist. Phil. Sci., 35, pp. 271-282. Niilinuoto I (1999). Defending Abduction, Philosophy of Science, 66, pp. 436-451.
  43. Nordman A. (2006). From Metaphysics to Metachemistry. In Baird D. et al. (eds.), pp. 347-361.
  44. Ostwald W. (1911). L’Evolution d’une Science. La Chimie, Paris, Flammarion.
  45. Poincaré H (1903). La science et l’hypothèse, Paris, Flammarion.
  46. Poincaré H (1905). La valeur de la Science, Paris, Flammarion.
  47. Prawitz D., Malmnaas P.-E. (1968). A survey of some connections between classical intuitionistic and minimal logic. In Schmidt H.A., Schütte K., Thiele H.-J. (eds.), Contributions to Mathematical Logic, Amsterdam, North-Holland, pp. 215-229.
  48. Reale G. (2009). ‘Henologia’ ed ‘Ontologia’: i due tipi di metafisica creati dai Greci. In
  49. Drago A., Trianni P. (eds.). La Filosofia di Lanza del Vasto. Un ponte tra Occidente ed Oriente (Milano, Il Grande Vetro / Jaca book, pp. 153-164.
  50. Scerri E.R. (1997). Has The Periodic Table Been Fully Axiomatized?, Erkenntnis, 47, pp. 229-243.
  51. Scerri E.R. (2001). Prediction and the Periodic Table, St. History and Phil. Sci., 32, pp. 407-432.
  52. Scerri E.R. (2005). Response to Barnes’ critique of Scerri and Worrall, Stud. Hist. Phil. Sci., 36, pp. 813-816.
  53. Scerri E.R. (2008). Collected Papers on Philosophy of Chemistry, London, Imperial College Press.
  54. Scerri E.R., Worrall J. (2001). Prediction and the periodic table, Studies in History and Philosophy of Science, 32, pp. 407-452.
  55. Shapere D. (1977). Scientific theories and their Domains. In Suppe P. (ed.) (1977), pp. 518-565.
  56. Schindler S. (2008). Use-novel predictions and Mendeleev’s periodic table: response to Scerri and Worral, St. Hist. Phil. Sci., 39, pp. 265-269.
  57. Suppe P. (ed.) (1977). The Structure of the Scientific Theories, Champaign, Illinois University Press.
  58. Theobald D.W. (1976). Some Considerations in the Philosophy of Chemistry, Chem. Soc Rev., 5 (1976), pp. 203-213
  59. Troelstra A., van Dalen D. (1988). Constructivism in Mathematics, Vol. I, Amsterdam, North-Holland.
  60. Worrall J. (2005). Prediction and the ‘periodic’ law: a rejonder to Barnes, Stud. Hist. Phil. Sci., 36, pp. 817-826.

  • A New History of Logic: The Laborious Birth of a Formal Pluralism Antonino Drago, in Advances in Historical Studies /2021 pp.247
    DOI: 10.4236/ahs.2021.104016
  • Chemistry Education and Contributions from History and Philosophy of Science Mansoor Niaz, pp.159 (ISBN:978-3-319-26246-8)
  • Joule’s Experiment as an Event Triggering a Formalization of a Baconian Science Till Up to an Alternative Theory to Newton’s One Antonino Drago, in Foundations of Science /2021 pp.585
    DOI: 10.1007/s10699-020-09667-z

Antonio Drago, Il ruolo del sistema periodico degli elementi nel caratterizzare la chimica classica come teoria scientifica in "EPISTEMOLOGIA" 1/2014, pp 37-57, DOI: 10.3280/EPIS2014-001003