The structure-function relationship: the interactions between stress, immunity and fascia

Journal title PNEI REVIEW
Author/s Nicola Barsotti, Marco Chiera, Diego Lanaro
Publishing Year 2021 Issue 2021/1 Language Italian
Pages 14 P. 71-84 File size 1205 KB
DOI 10.3280/PNEI2021-001003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The stress response, by releasing glucocorticoids and catecholamines and modifying the endocrine, neural and immune functions, can affect the body structure, at both tissue and cellular level. In particular, through the involvement of the immune system, the stress response can alter the structure of fascia, a kind of connective tissue located everywhere in the organism that perform paramount architectural and communication roles for every organ. In the present article, by analyzing the stress response, the immune system and the connective tissue, the Authors carry out a review of these interactions under the lens of Pnei to highlight how body structure and function are tightly intertwined. A specific attention will be paid to how fascia, muscles and bones are affected by the stress response and to how lifestyle can play a determinant role in this dynamic.

Keywords: Stress, Immune system, Fascia, Connective tissue, Myofibroblasts, Mechanobiology.

  1. Annunziato F., Romagnani C., & Romagnani S. (2015). The 3 major types of innate and adaptive cell-mediated effector immunity. Journal of Allergy and Clinical Immunology, 135(3), 626–635. -- https://doi.org/10.1016/j.jaci.2014.11.001
  2. Ball S.L., Mann D.A., Wilson J.A., & Fisher A.J. (2016). The Role of the Fibroblast in Infl ammatory Upper Airway Conditions. The American Journal of Pathology, 186(2), 225–233. -- https://doi.org/10.1016/j.ajpath.2015.09.020
  3. Bao A.-M., & Swaab D.F. (2019). The human hypothalamus in mood disorders: The HPA axis in the center. IBRO Reports, 6, 45–53. -- https://doi.org/10.1016/j.ibror.2018.11.008
  4. Bellinger D.L., & Lorton D. (2014). Autonomic regulation of cellular immune function. Autonomic Neuroscience, 182, 15–41. -- https://doi.org/10.1016/j.autneu.2014.01.006
  5. Berger J.M., Singh P., Khrimian Horvath T.L., Domingos A.I., Marsland A.L., Yadav V.K., Rahmouni K., Gao X.-B., & Karsenty G. (2019). Mediation of the Acute Stress Response by the Skeleton. Cell Metabolism, 30(5), 890-902.e8. -- https://doi.org/10.1016/j.cmet.2019.08.012
  6. Bosma-den Boer M.M., van Wetten M.-L., & Pruimboom L. (2012). Chronic infl ammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. Nutrition & Metabolism, 9(1), 32. -- https://doi.org/10.1186/1743-7075-9-32
  7. Bower J.E., & Irwin M.R. (2016). Mind–body therapies and control of infl amatory biology: A descriptive review. Brain, Behavior, and Immunity, 51, 1–11. -- https://doi.org/10.1016/j.bbi.2015.06.012
  8. Cury P.R., Araújo V.C., Canavez F., Furuse C., & Araújo N.S. (2007). Hydrocortisone Affects the Expression of Matrix Metalloproteinases (MMP-1, -2, -3, -7, and -11) and Tissue Inhibitor of Matrix Metalloproteinases (TIMP-1) in Human Gingival Fibroblasts. Journal of Periodontology, 78(7), 1309–1315. -- https://doi.org/10.1902/jop.2007.060225
  9. De Punder K., & Pruimboom L. (2015). Stress Induces Endotoxemia and Low-Grade Infl ammation by Increasing Barrier Permeability. Frontiers in Immunology, 6, 223. -- https://doi.org/10.3389/fi mmu.2015.00223
  10. Decaris M.L., Emson C.L., Li K., Gatmaitan M., Luo F., Cattin J., Nakamura C., Holmes W.E., Angel T.E., Peters M.G., Turner S.M., & Hellerstein M.K. (2015). Turnover Rates of Hepatic Collagen and Circulating Collagen-Associated Proteins in Humans with Chronic Liver Disease. PLOS ONE, 10(4), e0123311. -- https://doi.org/10.1371/journal.pone.0123311
  11. Deo S.H., Jenkins N.T., Padilla J., Parrish A.R., & Fadel P.J. (2013). Norepinephrine increases NADPH oxidase-derived superoxide in human peripheral blood mononuclear cells via α-adrenergic receptors. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(10), R1124–R1132. -- https://doi.org/10.1152/ajpregu.00347.2013
  12. Dhabhar F.S. (1998). Stress-Induced Enhancement of Cell-Mediated Immunity. Annals of the New York Academy of Sciences, 840(1), 359–372. -- https://doi.org/10.1111/j.1749-6632.1998.tb09575.x
  13. Dum R.P., Levinthal D.J., & Strick P.L. (2016). Motor, cognitive, and affective areas of the cerebral cortex infl uence the adrenal medulla. Proceedings of the National Academy of Sciences, 113(35), 9922–9927. -- https://doi.org/10.1073/pnas.1605044113
  14. Field T. (2016). Massage therapy research review. Complementary Therapies in Clinical Practice, 24, 19–31. -- https://doi.org/10.1016/j.ctcp.2016.04.005
  15. Fiuza-Luces C., Garatachea N., Berger N.A., & Lucia A. (2013). Exercise is the Real Polypill. Physiology, 28(5), 330–358. -- https://doi.org/10.1152/physiol.00019.2013
  16. Fourie W.J. (2012). Surgery and scarring. In: R. Schleip, T. Findley, L. Chaitow, & P. Huijing (Eds.), Fascia: The Tensional Network of the Human Body (p. 411–419). Edinburgh: Elsevier.
  17. Hinz B. (2010). The myofi broblast: Paradigm for a mechanically active cell. Journal of Biomechanics, 43(1), 146–155. -- https://doi.org/10.1016/j.jbiomech.2009.09.020
  18. Joseph M.F., & Denegar C.R. (2015). Treating Tendinopathy. Clinics in Sports Medicine, 34(2), 363–374. -- https://doi.org/10.1016/j.csm.2014.12.006
  19. Kim J.-K., Shin Y.J., Ha L.J., Kim D.-H., & Kim D.-H. (2019). Unraveling the Mechanobiology of the Immune System. Advanced Healthcare Materials, 1801332. -- https://doi.org/10.1002/adhm.201801332
  20. Klein-Nulend J., Bakker A.D., Bacabac R.G., Vatsa A., & Weinbaum S. (2013). Mechanosensation and transduction in osteocytes. Bone, 54(2), 182–190. -- https://doi.org/10.1016/j.bone.2012.10.013
  21. Lee S.K., Achieng E., Maddox C., Chen S.C., Iuvone P.M., & Fukuhara C. (2011). Extracellular low pH affects circadian rhythm expression in human primary fi broblasts. Biochemical and Biophysical Research Communications, 416(3–4), 337–342. -- https://doi.org/10.1016/j.bbrc.2011.11.037
  22. Lee Y. (2013). The role of interleukin-17 in bone metabolism and infl ammatory skeletal diseases. BMB Reports, 46(10), 479–483. -- https://doi.org/10.5483/BMBRep.2013.46.10.141
  23. Micallef L., Vedrenne N., Billet F., Coulomb B., Darby I.A., & Desmoulière A. (2012). The myofi broblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis & Tissue Repair, 5(S1), S5. -- https://doi.org/10.1186/1755-1536-5-S1-S5
  24. Nicolaides N.C., Kyratzi E., Lamprokostopoulou A., Chrousos G.P., & Charmandari E. (2015). Stress, the Stress System and the Role of Glucocorticoids. Neuroimmunomodulation, 22(1–2), 6–19. -- https://doi.org/10.1159/000362736
  25. Oldknow K.J., MacRae V.E., & Farquharson C. (2015). Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. Journal of Endocrinology, 225(1), R1–R19. -- https://doi.org/10.1530/JOE-14-0584
  26. Pullar C.E. (2006). The 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fi broblasts via divergent mechanisms. Journal of Cell Science, 119(3), 592–602. -- https://doi.org/10.1242/jcs.02772
  27. Ross M.H., & Pawlina W. (2011). Histology: a text and atlas: with correlated cell and molecular biology (6th ed). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.
  28. Schakman O., Kalista S., Barbé C., Loumaye A., & Thissen J.P. (2013). Glucocorticoid-induced skeletal muscle atrophy. The International Journal of Biochemistry & Cell Biology, 45(10), 2163–2172. -- https://doi.org/10.1016/j.biocel.2013.05.036
  29. Schleip R., Klingler W., & Lehmann-Horn F. (2006). Fascia is able to contract in a smooth muscle-like manner and thereby infl uence musculoskeletal mechanics. Journal of Biomechanics, 39, S488. -- https://doi.org/10.1016/S0021-9290(06)84993-6
  30. Sivamani R.K., Pullar C.E., Manabat-Hidalgo C.G., Rocke D.M., Carlsen R.C., Greenhalgh D.G., & Isseroff R.R. (2009). Stress-Mediated Increases in Systemic and Local Epinephrine Impair Skin Wound Healing: Potential New Indication for Beta Blockers. PLoS Medicine, 6(1), -- e1000012. https://doi.org/10.1371/journal.pmed.1000012
  31. Stecco C., & Schleip R. (2016). A fascia and the fascial system. Journal of Bodywork and Movement Therapies, 20(1), 139–140. -- https://doi.org/10.1016/j.jbmt.2015.11.012
  32. Suzuki A., Maeda T., Baba Y., Shimamura K., & Kato Y. (2014). Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell International, 14(1), 129. -- https://doi.org/10.1186/s12935-014-0129-1
  33. Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., & Brown R.A. (2002). Myofi broblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5), 349–363. -- https://doi.org/10.1038/nrm809
  34. Tracy L.E., Minasian R.A., & Caterson E.J. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Advances in Wound Care, 5(3), 119–136. -- https://doi.org/10.1089/wound.2014.0561
  35. Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., & Blaxall B.C. (2016). Cardiac Fibrosis: The Fibroblast Awakens. Circulation Research, 118(6), 1021–1040. -- https://doi.org/10.1161/CIRCRESAHA.115.306565
  36. Van den Berg F. (2012). Extracellular matrix. In: R. Schleip, T. Findley, L. Chaitow, & P. Huijing (Eds.), Fascia: The Tensional Network of the Human Body (p. 165–170). Elsevier. -- https://doi.org/10.1016/B978-0-7020-3425-1.00058-1
  37. Villa J.K.D., Diaz M.A.N., Pizziolo V.R., & Martino H.S.D. (2017). Effect of vitamin K in bone metabolism and vascular calcifi cation: A review of mechanisms of action and evidences. Critical Reviews in Food Science and Nutrition, 57(18), 3959–3970. -- https://doi.org/10.1080/10408398.2016.1211616
  38. Witowski J., Kawka E., Rudolf A., & Jörres A. (2015). New Developments in Peritoneal Fibroblast Biology: Implications for Infl ammation and Fibrosis in Peritoneal Dialysis. BioMed Research International, 2015, 1–7. -- https://doi.org/10.1155/2015/134708
  39. Yang E.V., Bane C.M., MacCallum R.C., Kiecolt-Glaser J.K., Malarkey W.B., & Glaser R. (2002). Stress-related modulation of matrix metalloproteinase expression. Journal of Neuroimmunology, 133(1–2), 144–150. -- https://doi.org/10.1016/S0165-5728(02)00270-9
  40. Yang X., Chen B., Liu T., & Chen XiaoHong. (2014). Reversal of myofi broblast differentiation: A review. European Journal of Pharmacology, 734, 83–90. -- https://doi.org/10.1016/j.ejphar.2014.04.007
  41. Yao W., Dai W., Jiang J.X., & Lane N.E. (2013). Glucocorticoids and osteocyte autophagy. Bone, 54(2), 279–284. -- https://doi.org/10.1016/j.bone.2013.01.034

Nicola Barsotti, Marco Chiera, Diego Lanaro, La relazione struttura-funzione: le interazioni fra stress, immunità e fascia in "PNEI REVIEW" 1/2021, pp 71-84, DOI: 10.3280/PNEI2021-001003