Playing with blocks and cognitive development: A narrative review

Journal title RICERCHE DI PSICOLOGIA
Author/s Concetta Pirrone, Sabrina Castellano, Concetta Giuseppa Amata, Christopher Tienken
Publishing Year 2021 Issue 2021/3
Language Italian Pages 19 P. 1-19 File size 0 KB
DOI 10.3280/rip2021oa12859
DOI is like a bar code for intellectual property: to have more infomation click here

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Playing represents a fundamental activity for children’s growth. Games consisting in manipulating blocks, especially, seems to have an important role in the child’s cognitive development. Many studies have been conducted for investigating the various aspects of playing with blocks, in order to understand its actual effectiveness in relation to different cognitive skills. A first area of research regards the relationship between playing with building blocks and visual-spatial ability; a second one examines the relationship between playing with building blocks and mathematic skills; a third one explores the relationship between building blocks, visual-spatial skills, numerical intelligence in its various components and mental imagery. These studies suggest that playing with blocks represents an important recreational and educational tool with a high capacity to enhance the overall cognitive development and specific skills like the mathematical ones. This narrative review offers an analysis of the existing empirical evidence on playing with building blocks in order to understand its actual effectiveness. In an historical period where electronic devices are gradually replacing the manual games that have always accompanied human development, knowing the state of this kind of research may represent a source of reflection for reconsidering scholastic programs with the aim of a possible return to specific manual playing activities, in order to enhance cognitive functioning and specific school skills.

Keywords: ; Building Block Play; LEGO; mathematic; visual-spatial skills; mental imagery; cognitive development

  1. Borriello, G. A., & Liben, L. S. (2018). Encouraging maternal guidance of preschoolers’ spatial thinking during block play. Child development, 89(4), 1209-1222. DOI: 10.1111/cdev.12779
  2. Brosnan, M. J. (1998). Spatial ability in children’s play with Lego blocks. Perceptual and Motor Skills, 87, 19-28. DOI: 10.2466/pms.1998.87
  3. Caldera, Y. M., McDonald Culp, A., O’Brien, M., Truglio, R. T., Alvarez, M., & Huston, A. C. (1999). Children’s play preferences, construction play with blocks, and visual-spatial skills: Are they related? International Journal of Behavioral Development, 23, 855-872. DOI: 10.1080/016502599383577
  4. Casey, B. M., Pezaris, E. E., & Bassi, J. (2012). Adolescent boys’ and girls’ block constructions differ in structural balance: A block-building characteristic related to math achievement. Learning and Individual Differences, 22(1), 25-36. DOI: 10.1016/j.lindif.2011.11.008
  5. Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental psychology, 33(4), 669. DOI: 10.1037/0012-1649.33.4.669
  6. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental psychology, 31(4), 697. DOI: 10.1037/0012-1649.31.4.697
  7. Cohen, L. E., & Emmons, J. (2017). Block play: spatial language with preschool and school-aged children. Early Child Development and Care, 187(5-6), 967-977. DOI: 10.1080/03004430.2016.1223064
  8. Cohen, L., & Uhry, J. (2007). Young children’s discourse strategies during block play: A Bakhtinian approach. Journal of Research in Childhood Education, 21(3), 302-315. DOI: 10.1080/02568540709594596
  9. Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25-32. DOI: 10.1016/S0160-2896(03)00061-8
  10. Diamond, M. C., Krech, D., & Rosenzweig, M. R. (1964). The effects of an enriched environment on the histology of the rat cerebral cortex. Journal of Comparative Neurology, 123(1), 111-119. DOI: 10.1002/cne.901230110
  11. Eberly, J., & Golbeck, S. (2004). Blocks, building and mathematics: Influences of task format and gender of play partners among preschoolers. Advances in Early Education and Child Care, 13, 39-54. DOI: 10.1016/S0270-4021(04)13002-4
  12. Egger, M, Smith, G.D., & Altman, D.G. (2001). Systematic Reviews in Health Care: Meta-Analysis in Context. London, UK: BMJ Pubblishing Group.
  13. Ferrara, K., Hirsh- Pasek, K., Newcombe, N. S., Golinkoff, R. M., & Lam, W. S. (2011). Block talk: Spatial language during block play. Mind, Brain, and Education, 5(3), 143-151. DOI: 10.1111/j.1751-228X.2011.01122.x
  14. Gindrat, A. D., Chytiris, M., Balerna, M., Rouiller, E. M., & Ghosh, A. (2015). Use-dependent cortical processing from fingertips in touchscreen phone users. Current Biology, 25(1), 109-116. DOI: 10.1016/j.cub.2014.11.026
  15. Gizzonio, V., Bazzini, M. C., Marsella, C., Papangelo, P., Rollo, D., Rizzolatti, G., & Fabbri-Destro, M. (2018). Giocare, narrare, agire: il loro effetto sullo sviluppo cognitivo, linguistico e motorio nei bambini di età prescolare. Ricerche di Psicologia, 4, 589-606. DOI: 10.3280/RIP2018-004003
  16. Hanline, M. F., Milton, S., & Phelps, P. C. (2010). The relationship between preschool block play and reading and maths abilities in early elementary school: A longitudinal study of children with and without disabilities. Early Child Development and Care, 180(8), 1005-1017. DOI: 10.1080/03004430802671171
  17. Hirsch, F. (1996). The block book. Washington, DC: National Association for the Education of Young Children.
  18. Kamii, C., Miyakawa, Y., & Kato, Y. (2004). The development of logico-mathematical knowledge in a block-building activity at ages 1-4. Journal of Research in Childhood Education, 19(1) , 44-57. DOI: 10.1080/02568540409595053
  19. Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature reviews neuroscience, 2(9), 635-642. DOI: 10.1038/35090055
  20. Inguaggiato, E., Sgandurra, G., & Cioni, G. (2017). Brain plasticity and early development: implications for early intervention in neurodevelopmental disorders. Neuropsychiatrie de l'Enfance et de l'Adolescence, 65(5), 299-306. DOI: 10.1016/j.neurenf.2017.03.009
  21. Linn M. C., Peterson A. C. (1985). Gender differences in verbal ability: A metaanalysis. Psychological Bulletin, 104, 53-69. DOI: 10.1016/j.intell.2017.07.007
  22. Lombardi, C. M., Casey, B. M., Thomson, D., Nguyen, H. N., & Dearing, E. (2017). Maternal support of young children’s planning and spatial concept learning as predictors of later math (and reading) achievement. Early Childhood Research Quarterly, 41, 114-125. DOI: 10.1016/j.ecresq.2017.07.004
  23. Nath, S., & Szücs, D. (2014). Construction play and cognitive skills associated with the development of mathematical abilities in 7-year-old children. Learning and Instruction, 32, 73-80. DOI: 10.1016/j.learninstruc.2014.01.006
  24. Ness, D., & Farenga, S. J. (2016). Blocks, Bricks, and Planks: Relationships between Affordance and Visuo-Spatial Constructive Play Objects. American Journal of Play, 8(2), 201-227.
  25. Oostermeijer, M., Boonen, A. J., & Jolles, J. (2014). The relation between children’s constructive play activities, spatial ability, and mathematical word problem-solving performance: a mediation analysis in sixth-grade students. Frontiers in psychology, 5, 782. DOI: 10.3389/fpsyg.2014.00782
  26. Petticrew M., Roberts H. (2006). Systematic reviews in the social sciences: A practical guide. Malden, Ma: Blackwell Publishing.
  27. Piaget, J. (1945). La formation du symbole chez l’enfant: Imitation, jeu et rêve, image et representation. Paris, France: Delachaux et Niestlé.
  28. Picket, L. (1998). Literacy learning during block play. Journal of Research in Childhood Education, 12, 225-230. DOI: 10.1080/02568549809594886
  29. Pirrone C., Di Nuovo, S. (2014). Can playing and imagining aid in learning mathematics? An experimental study of the relationships among building-block play, mental imagery, and arithmetic skills. Applied Bulletin of Psychology, 62, 30-40.
  30. Pirrone C., Nicolosi, A., Passanisi, A., Di Nuovo, S. (2015). Learning Potential in Mathematics through Imagination and Manipulation of Building Blocks. Mediterranean Journal of Social Sciences, 6(4), 152-159. DOI: 10.5901/mjss.2015.v6n4s3p152
  31. Pirrone, C., Tienken, C. H., Pagano, T., & Di Nuovo, S. (2018). The influence of building block play on mathematics achievement and logical and divergent thinking in Italian primary school mathematics classes. The Education Forum, 82(1), 40-58. DOI: 10.1080/00131725.2018.1379581
  32. Ramani, G. B., Zippert, E., Schweitzer, S., & Pan, S. (2014). Preschool children’s joint block building during a guided play activity. Journal of Applied Developmental Psychology, 35(4), 326-336. DOI: 10.1016/j.appdev.2014.05.005
  33. Reifel, S. (1984). Block construction: Children’s developmental landmarks in representation of space. Young Children, 40, 61-67.
  34. Reifel, S., & Greenfield, P. M. (1982). Structural development in a symbolic medium: The representational use of block constructions. Action and thought: From sensorimotor schemes to symbolic operations, 203-233.
  35. Richardson, M., Hunt, T. E., & Richardson, C. (2014). Children’s construction task performance and spatial ability: Controlling task complexity and predicting mathematics performance. Perceptual and motor skills, 119(3), 741-757. DOI: 10.2466/22.24.PMS.119c28z8
  36. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research: Learning trajectories for young children. Routledge.
  37. Schmitt, S. A., Korucu, I., Napoli, A. R., Bryant, L. M., & Purpura, D. J. (2018). Using block play to enhance preschool children’s mathematics and executive functioning: A randomized controlled trial. Early Childhood Research Quarterly, 44, 181-191. DOI: 10.1016/j.ecresq.2018.04.006
  38. Simoncini, K., Forndran, A., Manson, E., Sawi, J., Philip, M., & Kokinai, C. (2020). The Impact of Block Play on Children’s Early Mathematics Skills in Rural Papua New Guinea. International Journal of Early Childhood, 1-17. DOI: 10.10007/s13158-020-00261-9
  39. Stannard, L., Wolfgang, C. H., Jones, I., & Phelps, P. (2001). A longitudinal study of the predictive relations among construction play and mathematical achievement. Early Child Development and Care, 167(1), 115-125. DOI: 10.1080/0300443011670110
  40. Stroud, J. E. (1995). Block play: Building a foundation for literacy. Early Childhood Education Journal, 23, 9-13. DOI: 10.1007/BF02353373
  41. Suh, D. D., Liang, E., Ng, F. F. Y., & Tamis-LeMonda, C. S. (2019). Children’s Block-Building Skills and Mother-Child Block-Building Interactions Across Four US Ethnic Groups. Frontiers in psychology, 10. DOI: 10.3389/fpsyg.2019.01626
  42. Thomson, D., Casey, B. M., Lombardi, C. M., & Nguyen, H. N. (2020). Quality of fathers’ spatial concept support during block building predicts their daughters’ early math skills-but not their sons’. Early Childhood Research Quarterly, 50, 51-64. DOI: 10.1016/j.ecresq.2018.07.008
  43. Tracy, M. D. (1987). Toys, spatial ability, and science and mathematics achievement: Are they related? Sex Roles, 17, 115-138. DOI: 10.1007/BF00287620
  44. Trawick-Smith, J., Swaminathan, S., Baton, B., Danieluk, C., Marsh, S., & Szarwacki, M. (2017). Block play and mathematics learning in preschool: the effects of building complexity, peer and teacher interactions in the block area, and replica play materials. Journal of Early Childhood Research, 15(4), 433-448. DOI: 10.1177/1476718X16664557
  45. Verdine, B. N., Golinkoff, R. M., Hirsh- Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child development, 85(3), 1062-1076. DOI: 10.1111/cdev.12165
  46. Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173-180. DOI: 10.1080/02568540109594958
  47. Wolfgang, C., Stannard, L., & Jones, I. (2003). Advanced constructional play with LEGOs among preschoolers as a predictor of later school achievement in mathematics. Early Child Development and Care, 173(5), 467-475. DOI: 10.1080/0300443032000088212
  48. Zacks, J. M., & Tversky, B. (2003). Structuring information interfaces for procedural learning. Journal of Experimental Psychology: Applied, 9, 88-100. DOI: 10.1037/1076-898X.9.2.88
  49. Zippert, E. L., Douglas, A. A., Smith, M. R., & Rittle-Johnson, B. (2020). Preschoolers’ broad mathematics experiences with parents during play. Journal of Experimental Child Psychology, 192, 104757. DOI: 10.1016/j.jecp.2019.104757

Concetta Pirrone, Sabrina Castellano, Concetta Giuseppa Amata, Christopher Tienken, Il gioco con le costruzioni e lo sviluppo cognitivo: una review narrativa in "RICERCHE DI PSICOLOGIA" 3/2021, pp 1-19, DOI: 10.3280/rip2021oa12859