La riabilitazione motoria nel morbo di parkinson: nuovi interventi e prospettive future

Titolo Rivista RICERCHE DI PSICOLOGIA
Autori/Curatori Chiara Di Nuzzo
Anno di pubblicazione 2015 Fascicolo 2014/4
Lingua Italiano Numero pagine 26 P. 545-570 Dimensione file 254 KB
DOI 10.3280/RIP2014-004002
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Il presente articolo ha lo scopo di fornire una panoramica di metodi innovativi per la riabilitazione motoria in pazienti con Morbo di Parkinson. Questa patologia neurodegenerativa e progressiva colpisce il circuito dei gangli della base, causando un significativo calo del neurotrasmettitore dopamina che permette di controllare il movimento volontario. Di conseguenza, un malato parkinsoniano ha difficoltà a eseguire anche le più semplici attività quotidiane. Non essendoci una cura definitiva a questa patologia, è necessario affiancare al trattamento farmacologico training di riabilitazione motoria che sostengano efficacemente il malato nel mantenere il più possibile un’autonomia funzionale e una buona qualità di vita. La ricerca, basandosi su quanto noto circa l’apprendimento motorio nei soggetti sani, si è adoperata nell’individuare metodi innovativi ed efficaci per il trattamento dei sintomi motori del Morbo di Parkinson. Attualmente sono proposti promettenti interventi di tipo multimodale che combinano l’osservazione di azioni, la musica ritmica e la neurostimolazione.

Parole chiave:Morbo di Parkinson, riabilitazione motoria, apprendimento motorio, osservazione, imitazione, musica, ritmo, neurostimolazione, tDCS, multimodalità

  1. Alegre, M., Rodriguez-Oroz, M., Valencia, M., Guridi, J., Iriarte, J., Obeso, J., & Artieda, J. (2010). Changes in subthalamic activity during movement observation in Parkinson’s disease: is the mirror system mirrored in the basal ganglia? Clinical Neurophysiology, 121, 414-425. DOI: 10.1016/j.clinph.2009.11.013
  2. Alexander, G.E. & Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends Neuroscience, 13, 266-271.
  3. Antonietti, A. (2006). Significati musicali. Come la mente pensa i suoni. Milano: Quaderni di psicologia cognitiva, ISU.
  4. Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.C., & Farde, L. (2006). The correlative triad among aging,dopamine,and cognition: current status and future prospects. Neuroscience & Biobehavioral Reviews, 30, 791-807. DOI: 10.1016/j.neubiorev.2006.06.005
  5. Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., & Hinrichs, H. (2006). Shared Professional, networks for auditory and motor processing in pianists: evidence from fMRI conjunction. Neuroimage, 30, 917-926. DOI: 10.1016/j.neuroimage.2005.10.044
  6. Bellelli, G., Buccino, G., Bernardini, B., Padovani, A., & Trabucchi, M. (2010). Action observation treatment improves recovery of postsurgical orthopedic patients: evidence for a top-down effect? Archives of Physical Medicine and Rehabilitation, 91, 1489-1494. DOI: 10.1016/j.apmr.2010.07.01
  7. Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., & Zarahn, E. (2009). Non invasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Science of the United States of America, 106, 1590-1595.
  8. DOI: 10.1073/pnas.0805413106.Ridding,M.C.,&Ziemann,U.(2010).Determinantsoftheinductionofcorticalplasticitybynon-invasivebrainstimulationinhealthysubjects.JournalofPhysiology,588(13),2291-304.DOI:10.1113/jphysiol.2010.190314
  9. Rieckmann, A., & Bäckman, L. (2009). Implicit earning in aging: extant patterns and new directions. Neuropsychological Review, 19, 490-503. DOI: 10.1007/s11065-009-9117-y
  10. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and recognition of motor actions. Cognitive Brain Research, 3, 131-141. DOI: 10.1016/0926-6410(95)00038-0
  11. Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: recent findings and perspectives. Philosophical Transactions of the Royal Society B, 369, 1-12. DOI: 10.1098/rstb.2013.0420
  12. Rizzolatti, G., & Sinigaglia, C. (2006). So quel che fai. Raffaello Cortina Editore, Milano.
  13. Rizzolatti, G. & Craighero, L. (2004). The mirror neuron system. Annual Review of Neuroscience, 27, 169-192. DOI: 10.1146/annurev.neuro.27.070203.144230
  14. Romano, J.C., Howard, J.H.A., & Howard, D. (2010). One-year retention of general and sequence-specific skills in a probabilistic, serial reaction time task. Memory, 18, 427-441. DOI: 10.1080/09658211003742680
  15. Rowe, J., Stephan, K., Friston, K., Frackowiak, R., Lees, A., & Passingham, R. (2002). Attention to action in Parkinson’s disease. Impaired effective connectivity among frontal cortical regions. Brain, 125, 276-289. DOI: 10.1093/brain/awf036
  16. Salthouse, T.A. (1996). The processing- speed theory of adult age differences in cognition. Psychological Review, 103, 403-428. DOI: 10.1037/0033-295X.103.3.403
  17. Sammler, D., Novembre, G., Koelsch, S., & Keller, P. E. (2013). Syntax in a pianist’s hand: ERP signatures of “embodied” syntax processing in music. Cortex, 49(5), 1325-39. DOI: 10.1016/j.cortex.2012.06.007
  18. Schaefer, R.S. (2014). Images of time: temporal aspects of auditory and movement imagination. Frontiers in Psychology, 5(August), 877. DOI: 10.3389/fpsyg.2014.00877
  19. Schrag, A., Jahanshahi, M., & Quinn, N. (2000). What contributes to quality of life in patients with Parkinson’s disease? Journal of Neurology, Neurosurgery and Psychiatry, 69, 308-12. DOI: 10.1136/jnnp.69.3.308
  20. Shanahan, J., Morris, M.E., Bhriain, O.N., Saunders, J. & Clifford, A.M. (2015). Dance for People With Parkinson Disease: What Is the Evidence Telling Us? Archives of Physical Medicine and Rehabilitation, 96(1), 141-153. DOI: 10.1016/j.apmr.2014.08.017
  21. Shmuelof, L., & Krakauer, J.W. (2011). Are we ready for a natural history of motor learning? Neuron, 72, 469-476. DOI: 10.1016/j.neuron.2011.10.017.Shoulson,I.,Glaubiger,G.A.&Chase,T.N.(1975).On-offresponse.Clinicalandbiochemicalcorrelationsduringoralandintravenouslevodopaadministrationinparkinsonianpatients.Neurology,25,1144-1148.DOI:10.1212/wnl.25.12.1144
  22. Siebner, H.R., Mentschel, C., Auer, C., & Conrad, B. (1999). Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson’s disease. Neuroreport, 10, 589-594. DOI: 10.1097/00001756-199902250-00027
  23. Simon, J.R., Stollstorff, M., Westbay, L.C., Vaidya, C.J., Howard, J.H., & Howard, D. (2011). Dopamine transporter genotype predicts implicit sequence learning. Behavioral Brain Research, 216, 452-457. DOI: 10.1016/j.bbr.2010.08.043
  24. Nemeth, D., Janacsek, K., Londe, Z., Ullman, M.T., Howard, J.H., & Howard, D.V. (2010). Sleep has no critical role in implicit motor sequence learning in young and old adults. Experimental Brain Research, 201, 351-358. DOI: 10.1007/s00221-009-2024-x
  25. Nieuwboer, A., Rochester, L., Muncks, L., & Swinnen, S.P. (2009). Motor learning inParkinson’s disease: limitations and potential for rehabilitation. Parkinsonism Related Disorders, 15(Suppl 3), S53-S58. DOI: 10.1016/S1353-8020(09)70781-3
  26. Nieuwboer, A., Kwakkel, G., Rochester, L., Jones, D., VanWegen, E., & Willems, A. M. (2007). Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. Journal of Neurology, Neurosurgery and Psychiatry, 78, 134-140. DOI: 10.1136/jnnp.200X.097923
  27. Nitsche, M.A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633-639. DOI: 10.1111/j.1469-7793.2000.t01-1-00633.x
  28. Nombela, C., Hughes, L.E., Owen, A.M., & Grahn, J.A. (2013). Into the groove: Can rhythm influence Parkinson’s disease? Neuroscience and Biobehavioral Reviews, 37(10), 2564-2570. DOI: 10.1016/j.neubiorev.2013.08.003.Onla-or,S.,&Winstein,C.(2008).DeterminingtheoptimalchallengepointformotorskilllearninginadultswithmoderatelysevereParkinson’sdisease
  29. Neurorehabilitation and Neural Repair, 22(4), 385-95. DOI: 10.1177/1545968307313508
  30. Oouchida, Y., & Izumi, S. (2014). The mirror neuron system in motor and sensory rehabilitation. Brain Nerve, 66(6), 655-63.
  31. Oouchida, Y., Suzuki, E., Aizu, N., Takeuchi, N., & Izumi, S. (2013). Applications of Observational Learning in Neurorehabilitation. International Journal of Physical Medicine and Rehabilitation, 1(146), 1-5. DOI: 10.4172/2329-9096.1000146
  32. Pau, S., Jahnb, G., Sakreidac, K., Domina, M., & Lotze, M. (2013). Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: A combined behavioral and functional imaging study. NeuroImage, 64, 379-387. DOI: 10.1016/j.neuroimage.2012.09.012
  33. Pelosin, E., Avanzino, A., Bove, M., Stramesi, P., Nieuwboer, A., & Abbruzzese, G. (2010). Action observation improves freezing of gait in patients with Parkinson’s disease. Neurorehabilitation and Neural Repair, 24, 746-752. DOI: 10.1177/1545968310368685
  34. Penhune,V.B., & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. Journal of Neuroscience, 22, 1397-1406.
  35. Porro, C.A., Facchin, P., Fusi, S., Dri, G., & Fadiga, L. (2007). Enhancement of force after action observation behavioural and neurophysiological studies. Neuropsychologia, 45, 3114-3121. DOI: 10.1016/j.neuropsychologia.2007.06.016
  36. Priori, A., Berardelli, A., Rona, S., Accornero, N., & Manfredi, M. (1998). Polarization of the human motor cortex through the scalp. Neuroreport, 9, 2257-60. DOI: 10.1097/00001756-199807130-00020
  37. Priori, A. (2003). Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clinical Neurophysiology, 114, 589-595. DOI: 10.1016/S1388-2457(02)00437-6
  38. Priori, A., e Lefaucheur, J. P. (2007). Chronic epidural motor cortical stimulation for movement disorders. The Lancet Neurology, 6, 279-286. DOI: 10.1016/S1474-4422(07)70056-X
  39. Puttemans, V., Wenderoth, N., & Swinnen, S. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. Journal of Neuroscience, 25(17), 4270-8. DOI: 10.1523/JNEUROSCI.3866-04.2005
  40. Yutaka, O. (2013). Applications of Observational Learning in Neurorehabilitation. International Journal of Physical Medicine & Rehabilitation, 1(5), 1-6. DOI: 10.4172/2329-9096.1000146
  41. Smiley-Oyen, A., Lowry, K., & Emerson, Q. (2006). Learning and retention of movement sequences in Parkinson’s disease. Movement Disorders, 21(8), 1078-87. DOI: 10.1002/mds.20906
  42. Steele, C.J., & Penhune, V.B. (2010). Specific increases within global decreases: a functional magnetic resonance imagingin vestigation of five days of motor
  43. sequence learning. J. Neurosci., 30, 8332-8341. DOI: 10.1523/jneurosci.5569-09.2010
  44. Starr, P.A., Vitek, J.L. & Bakay, R. (1998). Ablative Surgery and Deep Brain Stimulation for Parkinson’s Disease. Neurosurgery, 43(5),989-1013. DOI: 10.1097/00006123-199811000-00001
  45. Swinnen, S., Steyvers, M., Van Den Bergh, L., & Stelmach, G. (2000). Motor learning and Parkinson’s disease: refinement of within-limb and between-limb coordination as a result of practice. Behavioural Brain Research, 111, 45-9. DOI: 10.1016/s0166-4328(00)00144-3
  46. Thaut, M. (2014). Auditory Cognitive neuroscience neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Frontiers in Psychology, 5, 1185. DOI: 10.3389/fpsyg.2014.01185
  47. Thaut, M.H., & Hoemberg, V. (2014). Oxford handbook of Neurologic Music Therapy. Oxford University Press, Oxford.
  48. Thaut, M.H., McIntosh, G.C., Rice, R.R., Miller, R.A., Rathbun, J., & Brault, J.M. (1996). Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement Disorders, 11, 193-200. DOI: 10.1002/mds.870110213
  49. Tia, B., Mourey, F., Ballay, Y., Sirandré, C., Pozzo, T., & Paizis, C. (2010). Improvement of motor performance by observational training in elderly people. Neuroscience Letters, 480(2), 138-142. DOI: 10.1016/j.neulet.2010.06.026
  50. Tecumseh, F.W., & Mauricio, D.M. (2014). Hierarchical processing in music, language, and action: Lashley revised. Annals of the New York Academy of Sciences, 1316, 87-104. DOI: 10.1111/nyas.12406
  51. Tillmann, B., Janata, P., & Bharucha, J.J. (2003). Activation of the Inferior Frontal Cortex in Musical Priming. Annals of the New York Academy of Sciences, 999, 9-11. DOI: 10.1196/annals.1284.031.Topper,A.K.,Maki,B.E.,&Holliday,P.J.(1993).Areactivities-basedassessmentsofbalanceandgaitintheelderlypredictiveofriskoffallingand/ortypeoffall?JournaloftheAmericanGeriatricsSociety,41,479-487
  52. Tzagournissakis, M., Dermon, C., & Savaki, H. (1994). Functional metabolic mapping of the rat brain during unilateral electrical stimulation of the subthalamic nucleus. Journal of cerebral blood flow and metabolism, 14, 132-144. DOI: 10.1038/jcbfm.1994.18
  53. Verschueren, S., Swinnen, S., Dom, R., & Weerdt, D. (1997). Interlimb coordination in patients with Parkinson’s disease: motor learning deficits and the importance of augmented information feedback. Experimental Brain Research, 113, 497-508. DOI: 10.1007/pl00005602
  54. Willis, A.W., Schootman, M., Kung, N., Wang, X-Y., Perlmutter, J.S., & Racette, B.A. (2014). Disparities in deep brain stimulation surgery among insured elders with Parkinson disease. Neurology, 82(2), 163-171. DOI: 10.1212/WNL.0000000000000017
  55. Wilson, J.K., Baran, B., Pace-Schott, E.F., Ivry, R.B., & Spencer, R.M.C. (2012). Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiology of Aging, 33, 991-1000. DOI: 10.1016/j.neurobiolaging.2011.06.029
  56. Wu, A.D., Fregni, F., Simon, D.K., Deblieck, C., & Pascual-Leone, A. (2008). Noninvasive brain stimulation for Parkinson’s disease and dystonia. Neurotherapeutics, 5, 345-361. DOI: 10.1016/j.nurt.2008.02.002
  57. Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. Medical education, 44, 75-84. DOI: 10.1111/j.1365-2923.2009.03421.x
  58. Benitez-Temino, B., Obeso, J.A., Rodri, M.C., Rodriguez, M., Blesa, F.J., & Guridi, J. (2008). Functional Organization of the Basal Ganglia: Therapeutic Implications for Parkinson’s Disease. Movement Disorders, 23(Suppl.3), 548-559. DOI: 10.1002/mds.22062
  59. Bennett, I.J., Howard, J.H., & Howard, D. (2007). Age-related differences in implicit learning of subtle third-order sequential structure. The Journal of Gerontology, 62, P98-P103. DOI: 10.1093/geronb/62.2.p98
  60. Bennett, I.J., Madden, D.J., Vaidya, C.J., Howard, J.H., & Howard, D.V. (2011). White matter integrity correlates of implicit sequence learning in healthy aging. Neurobiology Aging, 32, 2317e1–2317e12. DOI: 10.1016/j.neurobiolaging.2010.03.017
  61. Benoit, C., Dalla Bella, S., Farrugia, N., Obrig, H., Mainka, S., & Kotz, S. A. (2014). Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Frontiers in Human Neuroscience, 8(July), 1-11. DOI: 10.3389/fnhum.2014.00494
  62. Blandini, F. (2001). The role of the subthalamic nucleus in the pathophysiology of Parkinson’s disease. Functional Neurology, 16(Suppl. 4), 99–106.
  63. Blandini, F., & Greenamyre, J. (1995). Effect of subthalamic nucleus lesion on mitochondrial enzyme activity in rat basal ganglia. Brain Research, 669, 59-66. DOI: 10.1016/0006-8993(94)01233-8
  64. Bonini, L., Ferrari, P.F., & Fogassi, L. (2013). Neurophysiological bases underlying the organization of intentional actions and the understanding of others’ intention. Consciousness and Cognition, 3, 1095-104. DOI: 10.1016/j.concog.2013.03.001
  65. Boucai, L., Cerquetti, D., & Merello, M. (2004). Functional surgery for Parkinson’s disease treatment: a structured analysis of a decade of published literature. British Journal of Neurosurgery, 18, 213-222.
  66. DOI: 10.1080/02688690410001732625
  67. Brass, M., Bekkering, H., Wohlschlager, A., & Prinz, W. (2000). Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cognition, 44, 124-143. DOI: 10.1006/brcg.2000.1225
  68. Brown, L.A., de Bruin, N. De, Doan, J.B., & Suchowersky, O. (2009). Novel challenges to gait in Parkinson’s disease: the effect of concurrent music in single-and dual-task contexts. Archives of Physical Medicine and Rehabilitation,
  69. 90(9), 1578-1583. DOI: 10.1016/j.apmr.2009.03.009
  70. Buccino, G. (2014). Action observation treatment: a novel tool in neurorehabilitation Action observation treatment: a novel tool in neurorehabilitation. Philosophical Transactions Royal Society, 369 (April), 1-8. DOI: 10.1098/rstb.2013.0185
  71. Buccino, G., Arisi, D., Gough, P., Aprile, D., Ferri, C., Serotti, L., & Fazzi, E. (2012). Improving upper limb motor functions through action observation treatment: a pilot study in children with cerebral palsy. Developmental Medicine & Child Neurology, 54, 822-828. DOI: 10.1111/j.1469-8749.2012.04334.x
  72. Buccino, G., Binkofski, F., & Riggio, L. (2004). The mirror neuron system and action recognition. Brain and Language, 89, 370-376. DOI: 10.1016/S0093-934X(03)00356-0
  73. Buccino, G., Gatti, R., Giusti, M.C., Negrotti, A., Rossi, A., Calzetti, S., & Cappa, S.F. (2011). Action observation treatment improves autonomy in daily activities in Parkinson’s disease patients: results from a pilot study. Movement Disorders, 26, 1963-1964. DOI: 10.1002/mds.23745
  74. Buccino, G., & Riggio, L. (2006). The role of the mirror neuron system in motor learning. Kinesiology, 38(1), 5-15.
  75. Fitts, P. & Posner, M. (1967). Human performance. Belmont, CA:Brooks/Cole. Flament, D., Vaillancourt, D., Kempf, T., Shannon, K., & Corcos, D. (2003).
  76. EMG remains fractionated in Parkinson’s disease, despite practice-related improvements in performance. Clinical Neurophysiology, 114, 2385-96. DOI: 10.1016/S1388-2457(03)00254-2
  77. Fraix, V., Castrioto, A., Moro, E. & Krack, P. (2015). Trattamento chirurgico della malattia di Parkinson. EMC-Neurologia, 15(1), 1-14. DOI: 10.1016/s1634-7072(14)69825-1
  78. Fregni, F., Boggio, P.S., Santos, M.C., Lima, M., Vieira, A.L., Rigonatti, S.P., & Pascual-Leone, A. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21(10), 1693-1702. DOI: 10.1002/mds.21012
  79. Fregni, F., Santos, C.M., Myczkowski, M.L., Rigolino, R., Gallucci-Neto, J., Barbosa, E.R., & Marcolin, M.A. (2004). Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 75, 1171-1174. DOI: 10.1136/jnnp.2003.027060
  80. Fogassi, L., Ferrari, P.F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 302, 662-667. DOI: 10.1126/science.1106138
  81. Fritsch, B., Reis, J., Martinowich, K., Schambra, H., & Ji, Y. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron, 66, 198-204.
  82. 10.1016/j.neuron.2010.03.035.
  83. Giladi, N., McMahon, D., Przedborski, S., Flaster, E., Guillory, S., Kostic, V. & Fahn, S. (1992). Motor blocks in Parkinson’s disease. Neurology, 42, 333-9.
  84. Giladi, N., Shabtai, H., Simon, E., Biran, S., Tal, J., & Al, E. (2000). Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relateted Disorders, 6, 165170. DOI: 10.1016/S1353-8020(99)00062-0
  85. Grahn, J.A., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19(5), 893-906. DOI: 10.1162/jocn.2007.19.5.893
  86. Grahn, J.A. (2012). Neural mechanisms of rhythm perception: current findings and future perspectives. Topics in Cognitive Science, 4, 585-606. DOI: 10.1111/j.1756-8765.2012.01213.x
  87. Hebert, L., Bienias, J., McCann, J., Scherr, P., Wilson, R., & Evans, D. (2010). Upper and lower extremity motor performance and functional impairment in Alzheimer’s disease. American Journal of Alzheimer’s disease and Other Dementias, 25, 425-31. DOI: 10.1177/1533317510367636
  88. Herholz, S.C., Halpern, A., & Zatorre, R.J. (2012). Neuronal correlates of perception, imagery, and memory for familiar tunes. Journal of Cognitive Neuroscience, 24, 1382-1397. DOI: 10.1162/jocn_a_00216
  89. Hess, C.W., Vaillancourt, D.E., & Okun, M.S. (2013). The temporal pattern of stimulation may be important to the mechanism of deep brain stimulation. Experimental Neurology., 247, 296-302. DOI: 10.1016/j.expneurol.2013.02.001
  90. Howard, D.V., & Howard, J. (2001). When it does hurt to try: adult age differences in the effects of instructions on implicit pattern learning. Psychonomic Bulletin and Review, 8, 798-805. DOI: 10.3758/BF03196220
  91. Hummel, F., Celnik, P., Giraux, P., Floel, A., & Wu, W. (2005). Effects of noninvasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128, 490-499. DOI: 10.1093/brain/awh369
  92. Hummel, F.C., Voller, B., Celnik, P., Floel, A., & Giraux, P. (2006). Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neuroscience, 7, 73. DOI: 10.1186/1471-2202-7-73
  93. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s owns mirror neuron system. PLOS Biology, 3, 529-535. DOI: 10.1371/journal.pbio.0030079
  94. Janata, P., & Grafton, S.T. (2003). Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nature Neuroscience, 6, 682-687. DOI: 10.1038/nn1081
  95. Jeong, S., & Kim, M. (2007). Effects of a theory-driven music and movement program for stroke survivors in a community setting. Applied Nursing Research, 20, 125-131. DOI: 10.1016/j.apnr.2007.04.005
  96. Jessop, R., Horowicz, C., & Dibble, L. (2006). Motor learning and Parkinson disease: refinement of movement velocity and endpoint excursion in a limits of stability balance task. Neurorehabil Neural Repair, 20(4), 459-67. DOI: 10.1177/1545968306287107
  97. Jobges, M., Heuschkel, G., Pretzel, C., Illhardt, C., Renner, C., & Hummelsheim, H. (2004). Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease, Journal of Neurology, Neurosurgery and Psychiatry, 75, 1682-1687. DOI: 10.1136/jnnp.2003.016550
  98. Kang, E., & Paik, N. (2011). Effect of a tDCS electrode montage on implicit motor sequence learning in healthy subjects. Experimental & Translational Stroke Medicine, 3, 4. DOI: 10.1186/2040-7378-3-4
  99. Karlsen, K., Larsen, J., Tandberg, E., & Maeland, J. (1999). Influence of clinical and demographic variables on quality of life in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 66, 431e5. DOI: 10.1136/jnnp.66.4.43
  100. Kaski, D., Allumc, J.H., Bronsteina, A.M., & Dominguez, R.O. (2014). Applying anodal tDCS during tango dancing in a patient with Parkinson’s disease. Neuroscience Letters, 568, 34-43. DOI: 10.1016/j.neulet.2014.03.043
  101. Kennedy, K.M., & Raz, N. (2005). Age, sex and regional brain volume spredict perceptual-motor skill acquisition. Cortex, 41, 560-569. DOI: 10.1037/a0033844
  102. Kidgell, D.J., Goodwill, A.M., Frazer, A.K., & Daly, R.M. (2013). Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neuroscience, 14(1), 64. DOI: 10.1186/1471-2202-14-64
  103. King, L.A., Salarian, A., Mancini, M., Priest, K.C., Nutt, J., Serdar, A., & Road, P. (2013). Exploring outcome measures for exercise intervention in people with Parkinson’s disease. Parkinson’s Disease, 2013, 1-9. DOI: 10.1155/2013/572134
  104. Kotz, S.A., & Schwartze, M. (2011). Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications. Frontiers in Integrative Neuroscience, 5, 86. DOI: 10.3389/fnint.2011.00086
  105. Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: are view and proposal for a model of sensory predictability in auditory language perception? Cortex, 45, 982-990. DOI: 10.1016/j.cortex.2009.02.010
  106. Lefaucheur, J.P., Drouot, X., Von Raison, F., Menard-Lefaucheur, I., Cesaro, P., & Nguyen, J.P. (2004). Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson’s disease. Clinical Neurophysiology, 115, 2530-2541. DOI: 10.1016/j.clinph.2004.05.025
  107. Lehericy, S., Benali, H., Vande Moortele, P. F., Pelegrini-Issac, M., Waechter, T., Ugurbil, K., & Al, E. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Science of the United States of America, 102, 12566-12571. DOI: 10.1073/pnas.0502762102
  108. Calvo-Merino, B., Gre, J., Glaser, D.E., Passingham, R.E., & Haggard, P. (2006). Report seeing or doing ? influence of visual and motor familiarity in action observation. Current Biology, 16, 1905-1910. DOI 10.1016/j.cub.2006.07.065.
  109. Celnik, P., Webster, B., Glasser, D.M., & Cohen, L.G. (2008). Effects of action observation on physical training after stroke. Stroke, 39, 1814-1820. DOI: 10.1161/STROKEAHA.107.508184
  110. Chen, J.L., Penhune, V.B., & Zatorre, R.J. (2008). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844-2854. DOI: 10.1093/cercor/bhn042
  111. Cross, E.S., Hamilton, A.F.D.C., & Grafton, S.T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 1257–1267. DOI: 10.1016/j.neuroimage.2006.01.033
  112. Curran, T. (1997). Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychological Research, 60, 24-41. DOI: 10.1007/BF00419678
  113. D’Ausilio, A. (2007). The role of the mirror system in mapping complex sounds into actions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(22), 5847-8. DOI: 10.1523/JNEUROSCI.0979-07.2007
  114. DeBruin, N., Doan, J. B., Turnbull, G., Suchowersky, O., Bonfield, S., & Hu, B. (2010). Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Disease, July, 1-9. DOI: 10.4061/2010/483530
  115. Delong, M.R., & Wichmann, T. (2007). Circuits disorders of the basal ganglia. Archives of Neurology, 64(1), 20e24. DOI: 10.1001/archneur.64.1.20
  116. Di Nuzzo, C. (2015). Motor learning in healthy and Parkinsonian adults. The combined effects of multimodality and neurostimulation. Lambert Academic Publishing, Saarbrücken, Germany. Di Nuzzo, C., Antonietti, A., & Colombo, B. (2014). Il ruolo della musica nella fase di encoding nell’apprendimento motorio: uno studio di neuro stimolazione. Atti del Convegno: XX Congresso della Sezione di Psicologia sperimentale AIP, Pavia, Italia.
  117. Double, K.L. (2012). Parkinsonism and related disorders neuronal vulnerability in Parkinson’s disease. Parkinsonism and Realted Disorders, 18, S52-S54. DOI: 10.1016/S1353-8020(11)70018-9
  118. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., & Benali, H. (2009). Contribution of the basal ganglia and functionally related brain structures to motor learning. Brain Research, 199, 61-75. DOI: 10.1016/j.bbr.2008.11.012
  119. Doyon, J., & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. DOI: 10.1016/j.conb.2005.03.004
  120. Doyon, J., Penhune,V., & Ungerleider, L. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252-262. DOI: 10.1016/s0028-3932(02)00158-6
  121. Ertelt, D., Small, S., Solodkin, A., Dettmers, C., Mcnamara, A., Binkofski, F., & Buccino, G. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage, 36(Suppl.2), T164-173. DOI: 10.1016/j.neuroimage.2007.03.043
  122. Fadiga, L., Craighero, L., & D’Ausilio, A. (2009). Broca’s area in language, action, and music. Ann N Y Acad Sci, 1169, 448-458. DOI: 10.1111/j.1749-6632.2009.04582.x
  123. Fahn, S. (1982). Fluctuations of disability in Parkinson’s disease: pathophysiological aspects. In C.D. Marsden & S. Fahn (Eds.), Movement Disorders (pp.123-145). Butterworth Scientific, London.
  124. Fahn, S. (1995). The freezing phenomenon in parkinsonism. Advances in neurology, 67:53-63.
  125. Liebetanz, D., Koch, R., Mayenfels, S., König, F., Paulus, W., & Nitsche, M. (2009). Safety limits of cathodal transcranial direct current stimulation in rats. Neurophysiology, 120(6), 1161-1167. DOI: 10.1016/j.clinph.2009.01.022
  126. Lim, I., van Wegen, E., de Goede, C., & Al., E. (2005). Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clinical Rehabilitation, 19, 695-713. DOI: 10.1191/0269215505cr906oa
  127. Lim, Y. (2002). Effects of movement/exercise on physical and emotional functioning in elders with cognitive impairments. Journal of Korea Gerontological Society, 21, 197-211. DOI: 10.4040/jkan.2009.39.6.829
  128. Mak, M.K., & Hui-Chan, C.W. (2008). Cued task-specific training is better than exercise in improving sit-to-stand in patients with Parkinson’s disease: a randomized controlled trial. Movement Disorders, 23(4), 501-509. DOI: 10.1002/mds.21509
  129. Majsak, M.J., Kaminski, T., Gentile, A.M., & Glanagan, J.R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain, 121, 755-766. DOI: 10.1093/brain/121.4.755
  130. Maranesi, M., Livi, A., Fogassi, L., Rizzolatti, G., & Bonini, L. (2014). Mirror neuron activation prior to action observation in a predictable context. Journal of Neuroscience, 34(45), 14827-32. DOI: 10.1523/JNEUROSCI.2705-14.2014
  131. Marchese, R., Bove, M., & Abbruzzese, G. (2003). Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: A posturographic study. Movement Disorders, 18(Jun 6), 652-8. DOI: 10.1002/mds.10418
  132. Martinez-Martin, P. (2011). The importance of non-motor disturbances to quality of life in Parkinson ’ s disease. Journal of the Neurological Sciences, 310(1-2), 12-16. DOI: 10.1016/j.jns.2011.05.006
  133. McIntosh, G., Brown, S., Rice, R., & Thaut, M. (1997). Rhythmic auditorymotor facilitation of gait patterns in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 62, 22-26.
  134. 10.1136/jnnp.62.1.22. Michel, J., Benninger, D., Dietz, & van Hedel, H. (2009). Obstacle stepping in patients with Parkinson’s disease. Journal of Neurology, 256, 457-63. DOI: 10.1007/s00415-009-0114-0
  135. Molnar-Szakacs, I., & Overy, K. (2006). Music and mirror neurons: from motion to “e”motion. Scan, 1, 235-241. DOI: 10.1093/scan/nsl029
  136. Morris, M.E., Iansek, R., Matyas, T., & Summers, J.L. (1994). The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain, 117, 1169-11821. DOI: 10.1093/brain/117.5.1169
  137. Morris, M.E., Iansek, R., Matyas, T., & Summers, J.L. (1996). Stride length regulation in Parkinson’s disease: normalization strategies and underlying mechanisms. Brain, 119, 551-568. DOI: 10.1093/brain/119.2.551
  138. Morris, M.E., & Iansek, R. (1996). Characteristics of motor disturbance in Parkinson’s disease and strategies for movement rehabilitation. Human Movement Science, 15, 649-669. DOI: 10.1016/0167-9457(96)00020-6
  139. Morris, M.E. (2000). Movement disorders in people with Parkinson disease: a model for physical therapy. Physical Therapy, 80, 578-597.
  140. Moussard, A., Bigand, E., Belleville, S., & Peretz, I. (2014). Music as a Mnemonic to Learn Gesture. Frontiers in Human Neuroscience, 8, 294. DOI: 10.3389/fnhum.2014.00294
  141. Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., & Kofler, M. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640-644. DOI: 10.1038/nature712
  142. Muenter, M.D. & Tyce, G.M. (1971). L-dopa therapy of Parkinson’s disease: plasma L-dopa concentration, therapeutic response, and side effects. Mayo Clinic Proceedings, 46, 231-239.

Chiara Di Nuzzo, La riabilitazione motoria nel morbo di parkinson: nuovi interventi e prospettive future in "RICERCHE DI PSICOLOGIA " 4/2014, pp 545-570, DOI: 10.3280/RIP2014-004002