Mitigating regional investment gaps: An analysis of the tax credit for the Southern Italy

Journal title PRISMA Economia - Società - Lavoro
Author/s Francesca Gastaldi, EugenioPalmieri, Maria Grazia Pazienza, Fiorenza Venturini
Publishing Year 2023 Issue 2021/1-2 Language Italian
Pages 26 P. 38-63 File size 634 KB
DOI 10.3280/PRI2021-001004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The evaluation of investment incentives is fundamental both from the point of view of industrial policy, to choose the mechanisms that have the most impact on the decisions of companies, but also from the point of view of public finance, because it is of considerable importance to understand whether the resources allocated at the time of launch of the policy correspond to the resources used. This work proceeds with an ex post evaluation exercise of the investment tax credit policy reserved for companies operating in the southern regions between 2016 and 2019, on the basis of information extractable from the MEDITA microsimulation model. The analyzes make it possible to verify the partial effectiveness of the instrument used on the investment rate of companies.

Keywords: Investment incentives, evaluation of public policies, tax credit, Southern Italy.

  1. Arellano M., Bond S. (1991) “Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations”, The Review of Economic Studies 58(2), pp. 277-297.
  2. Becker S., Ichino A. (2002) “Estimation of Average Treatment Effects Based on Propensity Scores” The Stata Journal 2(4), pp. 358-377.
  3. Blundell R., Bond S. (1998) “Initial Conditions and Moment Restrictions in Dynamic Panel Data Models”, Journal of Econometrics 87(1), pp. 115-143.
  4. Bocci C., Caloffi, A., Mariani, M., Sterlacchini, A. (2021) “Evaluating Public Support to the Investment Activities of Business Firms: A Multilevel Meta-Regression Analysis of Italian Studies”, Italian Economic Journal, pp. 1-34.
  5. Bronzini R., De Blasio G. (2006) “Evaluating the Impact of Investment Incentives: The Case of Italy’s Law 488/1992”, Journal of Urban Economics, 60(2), pp. 327-349.
  6. Bronzini, R., De Blasio, G., Pellegrini, G., Scognamiglio, A. (2008) The Effect of Investment Tax Credit: Evidence from an Atypical Programme in Italy, Bank of Italy Temi di Discussione (Working Paper) No, 661, Banca d’Italia: Roma.
  7. Caiumi A. (2010) The Effectiveness Evaluation of Tax Expenditures: A Novel Approach. An Application to Regional Tax Incentives for Business Investment in Italy, ISTAT Working Paper n. 126, Istat: Roma.
  8. Cerqua A., Pellegrini, G. (2020) “Evaluation of the Effectiveness of Firm Subsidies in Lagging-Behind Areas: The Italian Job”, Scienze Regionali, 19(3), pp. 477-500.
  9. Corte dei Conti (2020) Rapporto sul coordinamento della Finanza Pubblica, Roma.
  10. Cribari-Neto F., Zeileis A. (2010) “Beta Regression in R”, Journal of Statistical Software 34, pp. 1 24.
  11. Criscuolo C., Martin R., Overman G., Van Reenen J. (2019) “Some Causal Effects of an Industrial Policy.” American Economic Review, 109(1), pp. 48-85.
  12. Croissant Y., Millo G. (2018) “Panel Data Econometrics with R: the Plm Package”, Journal of Statistical Software, 27(2), pp. 1-43.
  13. Ho D., Imai K., King G., Stuart E. A. (2011) “Match It: Nonparametric Preprocessing for Parametric Causal Inference” Journal of Statistical Software 42.8, pp. 1 28.
  14. Ho D., Imai K., King G., Stuart E. A. (2007) “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference” Political Analysis 15, 199 236.
  15. D’Aurizio L., De Blasio G. (2008) “La Valutazione degli Incentivi agli Investimenti”, in De Blasio G., Lotti F. (a cura di), La Valutazione degli Aiuti alle Imprese, pp. 59-96, il Mulino: Bologna.
  16. Devereux M.P., Griffith R. (1999) “The Taxation of Discrete Investment Choices”, Institute for Fiscal Studies Working Paper 98/16 (Revision 2), Londra.
  17. Ferman B. (2019) “Matching Estimators with Few Treated and Many Control Observations”, Journal of Econometrics, 225(2), pp. 295-307.
  18. Ferrari S., Cribari-Neto F. (2004) “Beta Regression for Modelling Rates and Proportions”, Journal of Applied Statistics, 31(7), pp. 799 815.
  19. Freitas I. B., Castellacci F., Fontana R., Malerba F., Vezzulli A. (2017) “Sectors and the Additionality Effects of R&D Tax Credits: A Cross-country Microeconometric Analysis”, Research Policy, 46(1), pp. 57-72.
  20. Gastaldi F., Pazienza M.G., Pollastri C. (2016) Gli Incentivi agli Investimenti nella Legge di Stabilità per il 2016, Nota di Lavoro 1/2016, Ufficio Parlamentare di Bilancio: Roma.
  21. Gastaldi F., Pazienza M.G., Pollastri C. (2018) “The 2017 Budget Law and Recent Trends in Corporate Taxation”, in Scialà A. (a cura di), Italian Fiscal Policy Review 2017, pp. 77-110, Università Roma Tre: Roma.
  22. Hanappi T. (2018) Corporate Effective Tax Rates: Model Description and Results from 36 OECD and non-OECD Countries, OECD Taxation Working Papers 38, OECD: Parigi.
  23. Ho D., Imai K., King G., Stuart E. A. (2007) “Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference”, Political Analysis 15, pp. 199-236.
  24. Ho D., Imai K., King G., Stuart E. A. (2011) “Match It: Nonparametric Preprocessing for Parametric Causal Inference”, Journal of Statistical Software, 42(8), pp. 1 28.
  25. ISTAT (2019) Attività Conoscitiva Preliminare all’Esame del Disegno di Legge Recante Bilancio di Previsione dello Stato per l'Anno Finanziario 2020 e Bilancio Pluriennale per il Triennio 2020-2022, Audizione Commissioni Parlamentari congiunte Novembre 2019, Istat: Roma.
  26. Jorgenson D.W. (1967) “The Theory of Investment Behaviour”, in Ferber R. (a cura di), Determinants of Investment Behavior, New York, pp. 129-155.
  27. Labra R., Torrecillas C. (2018) “Estimating Dynamic Panel Data: A Practical Approach to Perform Long Anels” Revista Colombiana de Estadística, 41(1), pp. 31-52.
  28. Rosenbaum P. R, Rubin D. B. (1983) “The Central Role of the Propensity Score in Observational Studies for Causal Effects” Biometrika, 70(1), pp. 41 55.
  29. Rosenbaum P. R. (1987) “Model-based Direct Adjustment”, Journal of the American Statistical Association, 82.398, pp. 387-394.
  30. UPB (2019) Rapporto sulla Politica di Bilancio 2020, Ufficio Parlamentare di Bilancio: Roma.
  31. UPB (2020) Memoria del Presidente dell’UPB in merito al DDL AC 2461 di Conversione del DL 8 aprile 2020 n. 23 (“Liquidità”), Ufficio Parlamentare di Bilancio: Roma.

Francesca Gastaldi, EugenioPalmieri, Maria Grazia Pazienza, Fiorenza Venturini, Mitigare i divari regionali negli investimenti: un’analisi del credito di imposta per il Mezzogiorno in "PRISMA Economia - Società - Lavoro" 1-2/2021, pp 38-63, DOI: 10.3280/PRI2021-001004