Recoupled: A simulation tool for renewable energy communities coupling electric and thermal energies

Author/s Francesco Gullì, Paolo Lazzeroni, Gianmarco Lorenti, Ivan Mariuzzo, Francesco Moraglio, Maurizio Repetto
Publishing Year 2023 Issue 2022/2 Language English
Pages 12 P. 49-60 File size 266 KB
DOI 10.3280/EFE2022-002003
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Renewable energy communities (RECs) are legal entities where citizens, small-to-medium en- terprises (SMEs) and local authorities join to manage cooperatively energy from renewable sources. Since the regulation requires to evaluate energy fluxes on the hour base, the operative control and performance assessment of these new energy hubs become complex and require the handling of data such as production from renewable energy sources (RES) and end user con- sumption, that are intrinsically affected by uncertainties. In this contribution, an optimization tool for the operational management of a REC is proposed. RECs can contain renewable energy technologies (photovoltaic or solar thermal panels, biofuel burners), electric, heating and cooling end users and coupling components (e.g., heat pumps). The tool can be used at the planning level to compare different REC configurations based on their performances, assuming optimal man- agement of the available technologies. In this paper, the tool is tested in the simulation of three case studies of collective self-consumption (that in Italy is a REC where all end users are in the same building), located at different latitudes of the Italian country.

Keywords: renewable energy communities, optimization, sectors coupling.

Jel codes: Q48, Q58, O33

  1. Corrado, V., Ballarini, I., Corgnati, S. P. (2014). Building Typology Brochure – Italy, Poli- tecnico di Torino – Dipartimento Energia.
  2. ARERA (2021), Prices and tariffs for electricity and gas. [Online]. -- Available at:, last accessed on February 1st, 2022. [In Italian].
  3. ARERA (2020), Delibera 318/2020/R/EEL of 04/08/2020. [In Italian].
  4. Canova, A., Lazzeroni, P., Lorenti, G. Moraglio, P., Porcelli, A., Repetto, M. (2022). Decar- bonizing residential energy consumption under the Italian collective self-consumption regulation. Sustainable Cities and Society, 87, pp. 104196.
  5. Cielo, A., Lazzeroni, P., Margiaria, P., Mariuzzo, I., Repetto, M. (2021), Energy Communities business models under the 2020 Italian regulation. Journal of Cleaner Production, 316.
  6. Decreto-Legge 22 giugno 2012, n. 83 “Misure urgenti per la crescita del Paese”. [In Italian]. DPR 412/93 1993, Regolamento recante norme per la progettazione, l’installazione, l’eserci- zio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei con-sumi di energia. [In Italian].
  7. EN 12831-1:2017 (2017), Energy performance of buildings – Method for calculation of the design heat load – Part 1: Space heating load.
  8. Fazlollahi, S., Bungener, S. L., Mandel, P., Becker, G., Maréchal, F. (2014). Multi-objectives, multi-period optimization of district energy systems: I. Selection of typical operating pe- riods. Computers & Chemical Engineering, 65: 54-66.
  9. GSE (2021). Regole tecniche per l’accesso ai servizi di incentivazione e valorizzazione dell’energia elettrica condivisa. [In Italian].
  10. Hwang, C. L., Lai, Y. J., Liu, T. Y. (1993), A new approach for multiple objective decision making. Computers & Operations Research, 20: 889-899.
  11. IEA – International Energy Agency (2016). A methodology for the analysis of PV self-con- sumption policies.
  12. ISPRA (2021). Indicatori di efficienza e decarbonizzazione del sistema energetico nazionale e del sistema elettrico. [In Italian].
  13. ISTAT (2021). Population Housing Census [Online]. Available: -- http://dati-censimento, last accessed on February 7th,2022. [In Italian].
  14. JRC – Joint Research Center (2021). Typical Meteorological Year generator. [Online]. Avail- able: --, last accessed on February 1st, 2022. Lazzeroni, P., Lorenti, G. Moraglio, P., Repetto, M. (2022). Modeling of Renewable Energy Communities: the RECoupled approach. In: 2022 IEEE 46th Annual Computers, Soft- ware, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June 2022-01 July 2022, pp. 1349-1354.
  15. Lazzeroni, P., Repetto, M., Gabbar, H. (2022). Introduction to energy management in smart grids, In J.R. Vacca (Ed.) Solving Urban Infrastructure Problems Using Smart City Tech- nologies (1st ed., pp. 480-506), Elsevier.
  16. Minuto, F. D., Lazzeroni, P., Borchiellini, R., Olivero, S., Bottacioli, L., Lanzini, A. (2021). Modeling technology retrofit scenarios for the conversion of condominium into an energy community: An Italian case study. Journal of Cleaner Production, 282.
  17. PVGIS – Joint Research Center (2021). Photovoltaic Geographical Information System. [Online]. Available: --, last accessed on February 1st, 2022.
  18. RECOpt 2021, Cadema (2021), RECOpt: Renewable Energy Community Optimisation. [Online]. Available: --, last accessed on Oc- tober 14th, 2021.
  19. Sibilio, S., D’Agostino, A., Fatigati, M., Citterio, M. (2014). Valutazione dei consumi nell’edilizia esistente e benchmark mediante codici semplificati: analisi di edifici residen- ziali. [In Italian].

Francesco Gullì, Paolo Lazzeroni, Gianmarco Lorenti, Ivan Mariuzzo, Francesco Moraglio, Maurizio Repetto, Recoupled: A simulation tool for renewable energy communities coupling electric and thermal energies in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 2/2022, pp 49-60, DOI: 10.3280/EFE2022-002003