Empirical evaluation of the socio-economic impacts of renewable energies in Morocco by 2035: An input-output model

Author/s Bikrat Fatiha, Mohamed Karim, Znagui Zineb, Ghazi Anouar
Publishing Year 2023 Issue 2022/2 Language English
Pages 25 P. 193-217 File size 369 KB
DOI 10.3280/EFE2022-002009
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The objective of the study is to identify scenarios relating to solar and wind renewable energy technologies by 2035 in Morocco, and to simulate their socio-economic effects (GDP, Value added by sector and employment). This consists in calculating the effect of these scenarios in comparison with a trend scenario that extends recent developments and takes into account the industrial integration policy already decided on both solar and wind technologies. The methodology applied is based on a dynamic Input-Output (IO) model. Three simulation sce- narios are discussed in this study for the assessment of the socio-economic impacts of con- centrated solar power, photovoltaic and wind energy on the Moroccan economy during the period 2020-2035. Also, a comparative analysis between the scenarios developed and the tar- gets indicated in the national strategies, in terms of economic and job creation indicators, reveals a significant potential in terms of job creation and value added.

Keywords: renewable energy, input-output model, employment, added-value, Morocco.

Jel codes: Q43, Q52

  1. Alper, A., Oguz, O. (2016). The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renewable and Sustainable Energy Reviews, 60: 953‑959.
  2. Ameur, A., Sekkat, A., Loudiyi, K., Aggour, M. (2019). Performance evaluation of different photovoltaic technologies in the region of Ifrane, Morocco. Energy for Sustainable De- velopment, 52: 96-103.
  3. Androniceanu, A., Kinnunen, J., Georgescu, I. (2021). Circular economy as a strategic option to promote sustainable economic growth and effective human development. Journal of International Studies, 14: 60‑73. DOI: 10.14254/2071-8330.2021/14-1/4
  4. Atsu, D., Seres, I., Farkas, I. (2021). The state of solar PV and performance analysis of dif- ferent PV technologies grid-connected installations in Hungary. Renewable and Sustain- able Energy Reviews, 141, 110808.
  5. Azeroual, M., Aboubakr, E., Moussaoui, H., El Markhi, H. (2018). Renewable Energy Poten- tial and Available Capacity for Wind and Solar Power in Morocco Towards 2030. Journal of Engineering Science and Technology Review, 11: 189‑198.
  6. Bennouna, A., El Hebil, C. (2016). Energy needs for Morocco 2030, as obtained from GDP- energy and GDP-energy intensity correlations. Energy Policy, 88: 45‑55.
  7. Bikrat, F., Mohamed, K. (2019). Key Determinants of Energy Demand : Case of Morocco. International Journal of Economics and Finance, 11(5): 50.
  8. Bouyghrissi, S., Berjaoui, A., Khanniba, M. (2021). The nexus between renewable energy consumption and economic growth in Morocco. Environmental Science and Pollution Re- search, 28(5): 5693‑5703.
  9. Calderón, S., Alvarez, A. C., Loboguerrero, A. M., Arango, S., Calvin, K., Kober, T., Daenzer, K., Fisher-Vanden, K. (2016). Achieving CO2 reductions in Colombia : Effects of carbon taxes and abatement targets. Energy Economics, 56: 575‑586.
  10. Carreno-Madinabeitia, S., Ibarra-Berastegi, G., Sáenz, J., Ulazia, A. (2021). Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010). Energy, 226, 120364.
  11. Creutzig, F., Goldschmidt, J. C., Lehmann, P., Schmid, E., von Blücher, F., Breyer, C., Fer- nandez, B., Jakob, M., Knopf, B., Lohrey, S., Susca, T., Wiegandt, K. (2014). Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition. Renewable and Sustainable Energy Reviews, 38: 1015‑1028.
  12. CSMD (2021). Le nouveau modèle de développement, libérer les énergies et restaurer la con- fiance pour accélérer la marche vers le progrès et la prospérité pour tous, rapport géné- ral. Commission Spéciale sur le Modèle de Développement.
  13. de Arce, R., Mahía, R., Medina, E., Escribano, G. (2012). A simulation of the economic im- pact of renewable energy development in Morocco. Energy Policy, 46: 335‑345.
  14. de Sisternes, F. J., Jenkins, J. D., Botterud, A. (2016). The value of energy storage in decar- bonizing the electricity sector. Applied Energy, 175: 368‑379.
  15. Domínguez, A., Geyer, R. (2019). Photovoltaic waste assessment of major photovoltaic in- stallations in the United States of America. Renewable Energy, 133: 1188‑1200.
  16. Escribano, G. (2019). The geopolitics of renewable and electricity cooperation between Mo- rocco and Spain. Mediterranean Politics, 24(5): 674‑681. DOI: 10.1080/13629395.2018.1443772
  17. Ghazouani, A., Xia, W., Ben Jebli, M., Shahzad, U. (2020). Exploring the Role of Carbon Taxation Policies on CO2 Emissions: Contextual Evidence from Tax Implementation and Non-Implementation European Countries. Sustainability, 12(20), Art. 20.
  18. GIZ (2016). L’efficacité énergétique et les énergies renouvelables dans le bâtiment: Emploi, valeur locale, qualification et effets économiques. Deutsche Gesellschaft für Internatio- nale Zusammenarbeit (GIZ) GmbH.
  19. Haidi, T., Cheddadi, B., Faissal, E., Idrissi, Z., Tarraq, A., Kiji, S. (2021). Wind energy de- velopment in Morocco: Evolution and impacts. International Journal of Electrical and Computer Engineering (IJECE), 11.
  20. Hilpert, S., Dettner, F., Al-Salaymeh, A. (2020). Analysis of Cost-Optimal Renewable Energy Expansion for the Near-Term Jordanian Electricity System. Sustainability, 12(22), Art. 22.
  21. IEA (2019). Energy Policies beyond IEA countries: Morocco 2019. The International Energy Agency.
  22. IRENA (2011). Renewable Energy Jobs: Status, Prospects & Policies. IRENA Working Paper, 32.
  23. IRENA (2013). Renewable Energy and Jobs (p. 144). International Renewable Energy Agency, Abu Dhabi.
  24. Jaraite, J., Karimu, A., Kažukauskas, A., Kazukauskas, P. (2015). Renewable Energy Policy, Economic Growth and Employment in EU Countries: Gain Without Pain? [SSRN Schol- arly Paper].
  25. Kousksou, T., Allouhi, A., Belattar, M., Jamil, A., El Rhafiki, T., Arid, A., Zeraouli, Y. (2015). Renewable energy potential and national policy directions for sustainable devel- opment in Morocco. Renewable and Sustainable Energy Reviews, 47, 46‑57.
  26. Laaroussi, A., Bouayad, A. (2020). The Energy Transition in Morocco. In A. Sayigh (Éd.), Renewable Energy and Sustainable Buildings: Selected Papers from the World Renewa- ble Energy Congress WREC 2018 (p. 349‑361). Springer International Publishing. DOI: 10.1007/978-3-030-18488-9_27
  27. Lambert, R. J., Silva, P. P. (2012). The challenges of determining the employment effects of renewable energy. Renewable and Sustainable Energy Reviews, 16(7): 4667‑4674.
  28. Leonard, A., Ahsan, A., Charbonnier, F., Hirmer, S. (2022). Renewable Energy in Morocco: Assessing risks to avoid a resource curse [SSRN Scholarly Paper].
  29. Leontief, W. (1986). Input-Output Economics. Oxford University Press.
  30. Leontief, W. W. (1936). Quantitative Input and Output Relations in the Economic Systems of the United States. The MIT Press, 18(3), 25.
  31. Li, A., & Lin, B. (2013). Comparing climate policies to reduce carbon emissions in China. Energy Policy, 60: 667‑674.
  32. Mathiesen, B. V., Lund, H., Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy, 88(2): 488‑501.
  33. MEMEE (2018). Projet de stratégie d’employabilité des jeunes dans les métiers verts. Minis- tère de l’Energie, des Mines, de l’Eau et de l’Environnement. Royaume du Maroc.
  34. Miller, R. E., Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions. Cam- bridge University Press.
  35. Neij, L. (2008). Cost development of future technologies for power generation – A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36(6): 2200‑2211.
  36. Nfaoui, H., Sayigh, A. (2020). New Horizons for Renewable Energies in Morocco and Africa. In A. Sayigh (Éd.), Renewable Energy and Sustainable Buildings: Selected Papers from the World Renewable Energy Congress WREC 2018 (p. 551‑565). Springer International Publishing. DOI: 10.1007/978-3-030-18488-9_44
  37. OECD (2017). Energy Technology Perspectives 2017: Catalysing Energy Technology Trans- formations. OECD.
  38. Probst, B., Anatolitis, V., Kontoleon, A., Anadón, L. D. (2020). The short-term costs of local content requirements in the Indian solar auctions. Nature Energy, 5(11), Art. 11.
  39. Ramírez, F. J., Honrubia-Escribano, A., Gómez-Lázaro, E., Pham, D. T. (2018). The role of wind energy production in addressing the European renewable energy targets: The case of Spain. Journal of Cleaner Production, 196: 1198‑1212.
  40. Simas, M., Pacca, S. (2013). Socio-economic Benefits of Wind Power in Brazil. Journal of Sustainable Development of Energy, Water and Environment Systems, 1(1): 27‑40.
  41. Sooriyaarachchi, T. M., Tsai, I.-T., El Khatib, S., Farid, A. M., Mezher, T. (2015). Job creation potentials and skill requirements in, PV, CSP, wind, water-to-energy and energy efficiency value chains. Renewable and Sustainable Energy Reviews, 52: 653‑668.
  42. Steffen, B., Beuse, M., Tautorat, P., Schmidt, T. S. (2020). Experience Curves for Operations and Maintenance Costs of Renewable Energy Technologies. Joule, 4(2): 359‑375.
  43. Walker, H., Lockhart, E., Desai, J., Ardani, K., Klise, G., Lavrova, O., Tansy, T., Deot, J., Fox, B., Pochiraju, A. (2020). Model of Operation-and-Maintenance Costs for Photovoltaic Systems (NREL/TP-5C00-74840, 1659995, MainId:6662; p. NREL/TP- 5C00-74840, 1659995, MainId:6662). DOI: 10.2172/1659995
  44. Wang, M.-C., Chen, P.-C., Fang, S.-C. (2018). A critical view of knowledge networks and innovation performance: The mediation role of firms’ knowledge integration capability. Journal of Business Research, 88: 222‑233.

Bikrat Fatiha, Mohamed Karim, Znagui Zineb, Ghazi Anouar, Empirical evaluation of the socio-economic impacts of renewable energies in Morocco by 2035: An input-output model in "ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT" 2/2022, pp 193-217, DOI: 10.3280/EFE2022-002009