Microbiota-gut-brain axis and neuroinfl ammation in the pathogenesis of Parkinson Disease

Journal title PNEI REVIEW
Author/s Andrea Minelli, Michael Di Palma
Publishing Year 2022 Issue 2022/2 Language Italian
Pages 14 P. 31-44 File size 167 KB
DOI 10.3280/PNEI2022-002004
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

Clinical and epidemiological studies show that inflammatory bowel disease (IBD) represents a significant risk factor for Parkinson's disease (PD). In the intestine of PD patients there is a conspicuous presence of CD4+ T cells (Th1/Th17) that specifically recognize self-antigens derived from Lewy’s bodies, inducing local inflammation, tissue damage and further aggrega- tion of a-synuclein. From the intestine, T-mediated inflammation extends to the brain, where the Lewy’s bodies migrate along the vagus nerve and spread trans-neurally to the substantia nigra of the midbrain, thus causing neurodegeneration and clinical manifestations of the PD. The alteration of the intestinal microbiota, which is frequent in Parkinsonian subjects, can also contribute to the pathogenesis of PD: mediators produced by commen- sal bacteria, such as short-chain fatty acids and dopamine, can influence the behavior of T lymphocytes and trigger a T-mediated response towards Lewy’s bodies, initially localized in the intestinal mucosa and then exten- ded to the brain. In summary, growing evidence make up an innovative hypothetical framework that attributes the pathogenesis of PD to a complex interweaving of factors (intestinal inflammation, dysbiosis, neuroinflammation), in which autoimmune mechanisms play a crucial role.

Keywords: Neurodegeneration, T lymphocytes, Autoimmunity, Lewy’s bodies, a-synuclein, Dysbiosis.

  1. Abeliovich A., & Gitler A.D. (2016). Defects in trafficking bridge Parkinson's di- sease pathology and genetics. Nature, 539(7628), 207–216. DOI: 10.1038/ nature20414
  2. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., & Rudensky A.Y. (2013). Metabolites produ- ced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.
  3. Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., & Sudo N. (2012). Critical role of gut microbiota in the production of biolo- gically active, free catecholamines in the gut lumen of mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(11), G1288–1295.
  4. Baizabal-Carvallo J.F., & Alonso-Juarez M. (2020). The Link between Gut Dy- sbiosis and Neuroinflammation in Parkinson's Disease. Neuroscience, 432, 160–173.
  5. Besser M.J., Ganor Y., & Levite M. (2005). Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human Tcells and triggers the selective secretion of either IL-10, TNFalpha or both. Journal of Neuroimmunolo- gy, 169(1-2), 161–171.
  6. Braak H., de Vos R.A., Bohl J., & Del Tredici K. (2006). Gastric alpha-sy- nuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in ca- ses staged for Parkinson's disease-related brain pathology. Neuroscience Letters, 396(1), 67–72.
  7. Brochard V., Combadiere B., Prigent A., Laouar Y., Perrin A., Beray-Berthat V., Bonduelle O., Alvarez-Fischer D., Callebert J., Launay J.M., Duyckaerts C., Flavell R.A., Hirsch E.C., & Hunot S. (2009). Infiltration of CD4+ lym- phocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. Journal of Clinical Investigation, 119(1), 182–192. DOI: 10.1172/JCI3647
  8. Chesselet M.F., Richter F., Zhu C., Magen I., Watson M.B., & Subramaniam S.R. (2012). A progressive mouse model of Parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics, 9(2), 297–314. DOI: 10.1007/ s13311-012-0104-2
  9. Elgueta D., Aymerich M.S., Contreras F., Montoya A., Celorrio M., Rojo-Bu- stamante E., Riquelme E., Gonzalez H., Vasquez M., Franco R., & Pache- co R. (2017). Pharmacologic antagonism of dopamine receptor D3 attenua- tes neurodegeneration and motor impairment in a mouse model of Parkinson's disease. Neuropharmacology, 113(Pt A), 110–123.
  10. Forsyth C.B., Shannon K.M., Kordower J.H., Voigt R.M., Shaikh M., Jaglin J.A., Estes J.D., Dodiya H.B., & Keshavarzian A. (2011). Increased intestinal per- meability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 6(12), e28032.
  11. Gate D., Tapp E., Leventhal O., Shahid M., Nonninger T.J., Yang A.C., Strempfl K., Unger M.S., Fehlmann T., Oh H., Channappa D., Henderson V.W., Keller A., Aigner L., Galasko D.R., Davis M.M., Poston K.L., & Wyss-Coray T. (2021). CD4(+) T cells contribute to neurodegeneration in Lewy body dementia. Science, 374(6569), 868–874.
  12. Gerhardt S., & Mohajeri M.H. (2018). Changes of Colonic Bacterial Composition in Parkinson's Disease and Other Neurodegenerative Diseases. Nutrients, 10(6), 708.
  13. Gonzalez H., Contreras F., & Pacheco R. (2015). Regulation of the Neurodegenera- tive Process Associated to Parkinson's Disease by CD4+ T-cells. Journal of Neuroim- mune Pharmacology, 10(4), 561–575.

Andrea Minelli, Michael Di Palma, Asse microbiota-intestino-cervello e neuroinfi ammazione nella patogenesi della malattia di Parkinson in "PNEI REVIEW" 2/2022, pp 31-44, DOI: 10.3280/PNEI2022-002004