Remembering sounds in the brain: From locationist findings to dynamic connectivity research

Titolo Rivista RIVISTA DI PSICOLOGIA CLINICA
Autori/Curatori Fulvia Francesca Campo, Elvira Brattico
Anno di pubblicazione 2023 Fascicolo 2022/2
Lingua Inglese Numero pagine 33 P. 7-39 Dimensione file 0 KB
DOI 10.3280/rpc2-2022oa14002
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

Our world is full of sounds, either verbal or non-verbal, pleasant or unpleasant, meaningful or simply irrelevant noise. Understanding, memorizing, and predicting the sounds, even non-verbal ones which our environment is full of, is a complex perceptuo-cognitive function that we constantly refine by everyday experience and learning. Musical sounds are a peculiar case due to their culture-dependent complexity and hierarchical organization requiring cognitive functions such as memory to be understood, and due to the presence of individuals (musicians) who dedicate their lifetime to master the specifics of those sounds and rules. Thus far, most of the neuroimaging research focused on verbal sounds and how they are processed and stored in the human brain. Only recently, researchers have tried to elucidate the neural mechanisms and structures allowing non-verbal, musical sounds to be modeled, predicted and remembered. However, those neuroimaging studies often provide only a mere snapshot of a complex dynamic process unfolding over time. To capture the complexity of musical memory and cognition, new methods are needed. A promising analysis method is dynamic functional connectivity, which assumes that functional connectivity changes in a short time. We conclude that moving from a locationist to a dynamic perspective on auditory memory might allow us to finally comprehend the neural mechanisms that regulate encoding and retrieval of sounds.

Our world is full of sounds, either verbal or non-verbal, pleasant or unpleasant, meaningful or simply irrelevant noise. Understanding, memorizing, and predicting the sounds, even non-verbal ones which our environment is full of, is a complex perceptuo-cognitive function that we constantly refine by everyday experience and learning. Musical sounds are a peculiar case due to their culture-dependent complexity and hierarchical organization requiring cognitive functions such as memory to be understood, and due to the presence of individuals (musicians) who dedicate their lifetime to master the specifics of those sounds and rules. Thus far, most of the neuroimaging research focused on verbal sounds and how they are processed and stored in the human brain. Only recently, researchers have tried to elucidate the neural mechanisms and structures allowing non-verbal, musical sounds to be modeled, predicted and remembered. However, those neuroimaging studies often provide only a mere snapshot of a complex dynamic process unfolding over time. To capture the complexity of musical memory and cognition, new methods are needed. A promising analysis method is dynamic functional connectivity, which assumes that functional connectivity changes in a short time. We conclude that moving from a locationist to a dynamic perspective on auditory memory might allow us to finally comprehend the neural mechanisms that regulate encoding and retrieval of sounds.

Parole chiave:; auditory memory; pattern recognition; brain spatiotemporal dynamics; dynamic functional connectivity; music neuroscience

  1. Aggleton, J. P., & Brown, M. W. (2006). Interleaving brain systems for episodic and recognition memory. Trends in cognitive sciences, 10(10), 455-463. DOI: 10.1016/j.tics.2006.08.003
  2. Alho, K., Paavilainen, P., Reinikainen, K., Sams, M., & Näätänen, R. (1986). Separability of different negative components of the event-related potential associated with auditory stimulus processing. Psychophysiology, 23(6), 613-623. DOI: 10.1111/j.1469-8986.1986.tb00680.x
  3. Alías, F., Socoró, J. C., & Sevillano, X. (2016). A review of physical and perceptual feature extraction techniques for speech, music and environmental sounds. Applied Sciences, 6(5), 143.
  4. Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., & Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. Cerebral cortex, 24(3), 663-676. DOI: 10.1093/cercor/bhs352
  5. Altenmüller, E., & Furuya, S. (2017). Apollos gift and curse: making music as a model for adaptive and maladaptive plasticity. e-Neuroforum, 23(2), 57-75. DOI: 10.1515/nf-2016-A054
  6. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Psychology of learning and motivation (Vol. 2, pp. 89-195). San Diego, CA: Academic Press. DOI: 10.1016/S0079-7421(08)60422-3
  7. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.
  8. Baddeley, A., Eysenck, M. W., & Anderson, M. C. (2020). Memory (3rd ed.). London: Routledge. DOI: 10.4324/9780429449642
  9. Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation (Vol. 8, pp. 47-89). Academic press. DOI: 10.1016/S0079-7421(08)60452-1
  10. Baird, A., & Samson, S. (2009). Memory for music in Alzheimer’s disease: unforgettable?. Neuropsychology review, 19(1), 85-101. DOI: 10.1007/s11065-009-9085-2
  11. Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., & Grafton, S. T. (2011). Conserved and variable architecture of human white matter connectivity. Neuroimage, 54(2), 1262-1279. DOI: 10.1016/j.neuroimage.2010.09.006
  12. Bendixen, A., Schröger, E., & Winkler, I. (2009). I heard that coming: event-related potential evidence for stimulus-driven prediction in the auditory system. Journal of Neuroscience, 29(26), 8447-8451. DOI: 10.1523/jneurosci.1493-09.2009
  13. Bigelow, J., & Poremba, A. (2014). Achilles’ ear? Inferior human short-term and recognition memory in the auditory modality. PloS One, 9(2), e89914. DOI: 10.1371/journal.pone.0089914
  14. Billig, A. J., Lad, M., Sedley, W., & Griffiths, T. D. (2022). The hearing hippocampus. Progress in Neurobiology, 102326. DOI: 10.1016/j.pneurobio.2022.102326
  15. Bonetti, L., Bruzzone, S. E. P., Sedghi, N. A., Haumann, N. T., Paunio, T., Kantojärvi, K., ... & Brattico, E. (2021a). Brain predictive coding processes are associated to COMT gene Val158Met polymorphism. NeuroImage, 233, 117954.
  16. Bonetti, L., Brattico, E., Carlomagno, F., Cabral, J., Stevner, A., Deco, G., ... & Kringelbach, M. L. (2020). Spatiotemporal whole-brain dynamics of auditory patterns recognition. BioRxiv. DOI: 10.1101/2020.06.23.165191
  17. Bonetti, L., Brattico, E., Bruzzone, S. E., Donati, G., Deco, G., Pantazis, D., ... & Kringelbach, M. L. (2021b). Temporal pattern recognition in the human brain: a dual simultaneous processing. BioRxiv. DOI: 10.1101/2021.10.21.465263
  18. Bonetti, L., Brattico, E., Carlomagno, F., Donati, G., Cabral, J., Haumann, N. T., ... & Kringelbach, M. L. (2021c). Rapid encoding of musical tones discovered in whole-brain connectivity. NeuroImage, 118735. DOI: 10.1016/j.neuroimage.2021.118735
  19. Brattico, E. (2019). The neuroaesthetics of music: A research agenda coming of age. In M. H. Thaut & D. A. Hodges (eds.), The Oxford Handbook of Music and the Brain (pp. 364-390). Oxford: Oxford University Press.
  20. Brattico, E., Bogert, B., & Jacobsen, T. (2013). Toward a neural chronometry for the aesthetic experience of music. Frontiers in Psychology, 4, 206. DOI: 10.3389/fpsyg.2013.00206
  21. Brattico, E., Bonetti, L., Ferretti, G., Vuust, P., & Matrone, C. (2021). Putting cells in motion: advantages of endogenous boosting of BDNF production. Cells, 10(1), 183.
  22. Brattico, E., Näätänen, R., & Tervaniemi, M. (2001). Context effects on pitch perception in musicians and nonmusicians: Evidence from event-relatedpotential recordings. Music Perception, 19(2), 199-222. DOI: 10.1525/mp.2001.19.2.199
  23. Brattico, E., Pallesen, K. J., Varyagina, O., Bailey, C., Anourova, I., Järvenpää, M., ... & Tervaniemi, M. (2009). Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study. Journal of Cognitive Neuroscience, 21(11), 2230-2244. DOI: 10.1162/jocn.2008.21144
  24. Brattico, E., Tervaniemi, M., & Picton, T. W. (2003). Effects of brief discrimination-training on the auditory N1 wave. Neuroreport, 14(18), 2489-2492. DOI: 10.1097/00001756-200312190-00039
  25. Brattico, E., & Varankaitė, U. (2019). Aesthetic empowerment through music. Musicae Scientiae, 23(3), 285-303. DOI: 10.1177/1029864919850606
  26. Brenner, C. A., Krishnan, G. P., Vohs, J. L., Ahn, W. Y., Hetrick, W. P., Morzorati, S. L., & O’Donnell, B. F. (2009). Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophrenia Bulletin, 35(6), 1065-1077. DOI: 10.1093/schbul/sbp091
  27. Broadbent, D. E. (1958). Perception and communication. New York: Pergamon Press.
  28. Bruzzone, S. E. P., Lumaca, M., Brattico, E., Vuust, P., Kringelbach, M. L., & Bonetti, L. (2022). Dissociated brain functional connectivity of fast versus slow frequencies underlying individual differences in fluid intelligence: a DTI and MEG study. Scientific Reports, 12(1), 1-15. DOI: 10.1038/s41598-022-08521-5
  29. Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832-837. DOI: 10.1038/nn.3423
  30. Burunat, I., Alluri, V., Toiviainen, P., Numminen, J., & Brattico, E. (2014). Dynamics of brain activity underlying working memory for music in a naturalistic condition. Cortex, 57, 254-269. DOI: 10.1016/j.cortex.2014.04.012
  31. Butler, R. A. (1968). Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. The Journal of the Acoustical Society of America, 44(4), 945-950. DOI: 10.1121/1.1911233
  32. Butler, R. A. (1972a). Frequency specificity of the auditory evoked response to simultaneously and successively presented stimuli. Electroencephalography and Clinical Neurophysiology, 33(3), 277-282. DOI: 10.1016/0013-4694(72)90154-X
  33. Butler, R. A. (1972b). The auditory evoked response to stimuli producing periodicity pitch. Psychophysiology, 9(2), 233-237. DOI: 10.1111/j.1469-8986.1972.tb00758.x
  34. Calhoun, V. D., Miller, R., Pearlson, G., & Adalı, T. (2014). The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron, 84(2), 262-274. DOI: 10.1016/j.neuron. 2014.10.015
  35. Cauda, F., D’Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage, 55(1), 8-23. DOI: 10.1016/j.neuroimage.2010.11.049
  36. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(03), 181e204. DOI: 10.1017/S0140525X12000477
  37. Cohen, M. A., Horowitz, T. S., & Wolfe, J. M. (2009). Auditory recognition memory is inferior to visual recognition memory. Proceedings of the National Academy of Sciences, 106(14), 6008-6010. DOI: 10.1073/pnas.0811884106
  38. Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C. (2011). Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. Journal of Neuroscience, 31(50), 18590-18597. DOI: 10.1523/JNEUROSCI.2599-11.2011
  39. Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96(2), 341. DOI: 10.1037/0033-2909.96.2.341
  40. Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163. DOI: 10.1037/0033-2909.104.2.163
  41. Cowan, N. (1998). Attention and memory: An integrated framework. Oxford: Oxford University Press.
  42. Cowan, N. (1999). An embedded-processes model of working memory. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, 20, 506. DOI: 10.1017/CBO9781139174909.006
  43. Cowan, N., Winkler, I., Teder, W., & Näätänen, R. (1993). Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(4), 909. DOI: 10.1037/0278-7393.19.4.909
  44. Criscuolo, A., Pando-Naude, V., Bonetti, L., Vuust, P., Brattico, E. (2022). An ALE meta-analytic review of musical expertise. BioRxiv. DOI: 10.1101/2021.03.12.434473
  45. Crowder, R. G. (1989). Imagery for musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 472. DOI: 10.1037/0096-1523.15.3.472
  46. Cuddy, L. L., Sikka, R., Silveira, K., Bai, S., & Vanstone, A. (2017). Musicevoked autobiographical memories (MEAMs) in Alzheimer disease: Evidence for a positivity effect. Cogent Psychology, 4(1), 1277578. DOI: 10.1080/23311908.2016.1277578
  47. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, C. (2015). The neural representation of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron, 88(1), 2-19. DOI: 10.1016/j.neuron.2015.09.019
  48. Deliege, I. (1987). Grouping conditions in listening to music: An approach to Lerdahl & Jackendoff’s grouping preference rules. Music Perception, 4(4), 325-359. DOI: 10.2307/40285378
  49. Deutsch, D. (1972). Octave generalization and tune recognition. Perception & Psychophysics, 11(6), 411-412. DOI: 10.3758/BF03206280
  50. Deutsch, D. (1975). The organization of short-term memory for a single acoustic attribute. Short-term Memory, 107-151.
  51. Deutsch, D. (1999). The processing of pitch combinations. In The psychology of music (pp. 349-411). San Diego, CA: Academic Press.
  52. Deutsch, D., & Feroe, J. (1981). The internal representation of pitch sequences in tonal music. Psychological Review, 88(6), 503. DOI: 10.1037/0033-295X.88.6.503
  53. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition?. Neuron, 73(3), 415-434. DOI: 10.1016/j.neuron.2012.01.010
  54. Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85(4), 341. DOI: 10.1037/0033-295X.85.4.341
  55. Dowling, W. J., Tillman, B., & Ayers, D. F. (2002). Memory and the experience of hearing music. Music Perception, 19(2), 249-276. DOI: 10.1525/mp.2001.19.2.249
  56. Euler, C. V., & Ricci, G. F. (1958). Cortical evoked responses in auditory area and significance of apical dendrites. Journal of Neurophysiology, 21(3), 231-246. DOI: 10.1152/jn.1958.21.3.231
  57. Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4. DOI: 10.3389/fnhum.2010.00215
  58. Fernández-Rubio, G., Carlomagno, F., Vuust, P., Kringelbach, M. L., & Bonetti, L. (2022). Associations between abstract working memory abilities and brain activity underlying long-term recognition of auditory sequences. PNAS Nexus, 1(4), 216. DOI: 10.1101/2022.05.19.492607
  59. FitzGerald, T. H., Dolan, R. J., & Friston, K. J. (2014). Model averaging, optimal inference, and habit formation. Frontiers in Human Neuroscience, 8, 457. DOI: 10.3389/fnhum.2014.00457
  60. Fornito, A., & Bullmore, E. T. (2012). Connectomic intermediate phenotypes for psychiatric disorders. Frontiers in Psychiatry, 3, 32. DOI: 10.3389/fpsyt.2012.00032
  61. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700-711. DOI: 10.1038/nrn2201
  62. Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148-158. DOI: 10.1016/S2215-0366(14)70275-5
  63. Fruhstorfer, H., Soveri, P., & Järvilehto, T. (1970). Short-term habituation of the auditory evoked response in man. Electroencephalography and Clinical Neurophysiology, 28(2), 153-161. DOI: 10.1016/0013-4694(70)90183-5
  64. Gaab, N., Gaser, C., Zaehle, T., Jancke, L., & Schlaug, G. (2003). Functional anatomy of pitch memory – an fMRI study with sparse temporal sampling. NeuroImage, 19(4), 1417-1426. DOI: 10.1016/s1053-8119(03) 00224-6
  65. García, J. J. M., Iodice, R., Carro, J., Sánchez, J. A., Palmero, F., & Mateos, A. M. (2012). Improvement of autobiographic memory recovery by means of sad music in Alzheimer’s disease type dementia. Aging Clinical and Experimental Research, 24(3), 227-232. DOI: 10.3275/7874
  66. Gatti, D., & Vecchi, T. (2019). Memoria. Dal ricordo alla previsione. Roma: Carocci.
  67. Gebauer, L., Kringelbach, M. L., & Vuust, P. (2015). Predictive coding links perception, action, and learning to emotions in music. Comment on “The quartet theory of human emotions: An integrative and neurofunctional model”, by S. Koelsch et al., Physics of Life Reviews, 13, 50-52. DOI: 10.1016/j.plrev.2015.04.023
  68. Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27(6), 627-640. DOI: 10.1111/j.1469-8986.1990.tb03184.x
  69. Graham, F. (1973). Habituation and dishabituation of responses innervated by the autonomic nervous system. In H. V. S. Peeke, M. J. Hertz (eds.), Habituation, Vol. 1 (pp. 175-206). Behavioral Studies. Orlando, FL: Academic Press.
  70. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14-23. DOI: 10.1016/j.tics.2005.11.006
  71. Gu, F., Wong, L., Chen, F., Huang, W. T., Wang, L., & Hu, A. X. (2018). Lateral inhibition is a neural mechanism underlying mismatch negativity. Neuroscience, 385, 38-46. DOI: 10.1016/j.neuroscience.2018.06.009
  72. Hallam, S. (2018). The Psychology of Music. London: Routledge.
  73. Hansen, N. C., Dietz, M. J., & Vuust, P. (2017). Commentary: Predictions and the brain: How musical sounds become rewarding. Frontiers in Human Neuroscience, 11. DOI: 10.3389/fnhum.2017.00168
  74. Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., ... & Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: neuromagnetic recordings in man. Neuroscience Letters, 50(1-3), 127-132. DOI: 10.1016/0304-3940(84)90474-9
  75. Hari, R., Rif, J., Tiihonen, J., & Sams, M. (1992). Neuromagnetic mismatch fields to single and paired tones. Electroencephalography and Clinical Neurophysiology, 82(2), 152-154. DOI: 10.1016/0013-4694(92)90159-F
  76. Haumann, N. T., Lumaca, M., Kliuchko, M., Santacruz, J. L., Vuust, P., & Brattico, E. (2021). Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 1754, 147248. DOI: 10.1016/j.brainres.2020.147248
  77. Heilbron, M., & Chait, M. (2018). Great expectations: is there evidence for predictive coding in auditory cortex?. Neuroscience, 389, 54-73. DOI: 10.1016/j.neuroscience.2017.07.061
  78. Herrmann, B., Henry, M. J., Fromboluti, E. K., McAuley, J. D., & Obleser, J. (2015). Statistical context shapes stimulus-specific adaptation in human auditory cortex. Journal of Neurophysiology, 113(7), 2582-2591. DOI: 10.1152/jn.00634.2014
  79. Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3. DOI: 10.3389/fpsyg.2012.00096
  80. Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., & Menon, R. S. (2013). Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Human Brain Mapping, 34(9), 2154-2177. DOI: 10.1002/hbm.22058
  81. Irish, M., Cunningham, C. J., Walsh, J. B., Coakley, D., Lawlor, B. A., Robertson, I. H., & Coen, R. F. (2006). Investigating the enhancing effect of music on autobiographical memory in mild Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 22(1), 108-120. DOI: 10.1159/000093487
  82. Megela, A. L., & Teyler, T. J. (1979). Habituation and the human evoked potential. Journal of Comparative and Physiological Psychology, 93(6), 1154. DOI: 10.1037/h0077630
  83. Johnson, J. K., Chang, C. C., Brambati, S. M., Migliaccio, R., Gorno-Tempini, M. L., Miller, B. L., & Janata, P. (2011). Music recognition in frontotemporal lobar degeneration and Alzheimer disease. Cognitive and Behavioral Neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 24(2), 74. DOI: 10.1097/WNN.0b013e31821de326
  84. Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99(1), 122. DOI: 10.1037/0033-295X.99.1.122
  85. Kanai, R., Komura, Y., Shipp, S., & Friston, K. (2015). Cerebral hierarchies: predictive processing, precision and the pulvinar. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1668), 20140169. DOI: 10.1098/rstb.2014.0169
  86. King, J. B., Jones, K. G., Goldberg, E., Rollins, M., MacNamee, K., Moffit, C., ... & Foster, N. L. (2019). Increased functional connectivity after listening to favored music in adults with Alzheimer dementia. The Journal of Prevention of Alzheimer’s Disease, 6(1), 56-62. DOI: 10.14283/jpad.2018.19
  87. Kliuchko, M., Brattico, E., Gold, B. P., Tervaniemi, M., Bogert, B., Toiviainen, P., & Vuust, P. (2019). Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS One, 14(5), e0216499. DOI: 10.1371/journal.pone.0216499
  88. Koelsch, S., Schröger, E., & Tervaniemi, M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport, 10(6), 1309-1313. DOI: 10.1097/00001756-199904260-00029
  89. Koelsch, S., Vuust, P., & Friston, K. (2019). Predictive processes and the peculiar case of music. Trends in Cognitive Sciences, 23(1), 63-77. DOI: 10.1016/j.tics.2018.10.006
  90. Kolata, G. (1984). Studying learning in the womb. Science, 225, 302-304. DOI: 10.1126/science.6740312
  91. Kropotov, J. D., Nääänen, R., Sevostianov, A. V., Alho, K., Reinikainen, K., & Kropotova, O. V. (1995). Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology, 32(4), 418-422. DOI: 10.1111/j.1469-8986.1995.tb01226.x
  92. Leopold, D. A., & Maier, A. (2012). Ongoing physiological processes in the cerebral cortex. NeuroImage, 62(4), 2190-2200. DOI: 10.1016/j.neuroimage.2011.10.059
  93. Lerdahl, F., Jackendoff, R. (1983). A generative theory of tonal music. Cambridge, MA: MIT Press.
  94. Limongi, R., Sutherland, S. C., Zhu, J., Young, M. E., & Habib, R. (2013). Temporal prediction errors modulate cingulate-insular coupling. NeuroImage, 71, 147-157. DOI: 10.1016/j.neuroimage.2012.12.078
  95. Lordier, L., Loukas, S., Grouiller, F., Vollenweider, A., Vasung, L., Meskaldij, D. E., ... & Hüppi, P. S. (2019). Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI. NeuroImage, 185, 857-864. DOI: 10.1016/j.neuroimage.2018.03.078
  96. Loukas, S., Lordier, L., Meskaldji, D. E., Filippa, M., Sa de Almeida, J., Van De Ville, D., & Hüppi, P. S. (2022). Musical memories in newborns: A resting-state functional connectivity study. Human Brain Mapping. DOI: 10.1002/hbm.25677
  97. Loveless, N. (1983). The orienting response and evoked potentials in man. Orienting and habituation: Perspectives in Human Research, 500, 71-108.
  98. Lumaca, M., Dietz, M. J., Hansen, N. C., Quiroga-Martinez, D. R., & Vuust, P. (2021). Perceptual learning of tone patterns changes the effective connectivity between Heschl’s gyrus and planum temporale. Human Brain Mapping, 42(4), 941-952. DOI: 10.1002/hbm.25269
  99. Massaro, D. W. (1970). Perceptual processes and forgetting in memory tasks. Psychological Review, 77(6), 557. DOI: 10.1037/h0029984
  100. Milner, B. (1966). Amnesia following operation on the temporal lobes. In Amnesia (pp. 109-133). London: Butterworths.
  101. Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313-329. DOI: 10.1016/0001-6918(78)90006-9
  102. Näätänen, R., & Michie, P. T. (1979). Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biological Psychology, 8(2), 81-136. DOI: 10.1016/0301-0511(79)90053-X
  103. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical Neurophysiology, 118(12), 2544-2590. DOI: 10.1016/j.clinph.2007.04.026
  104. Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 24(4), 375-425. DOI: 10.1111/j.1469-8986.1987.tb00311.x
  105. Näätänen, R., Sams, M., Alho, K., Paavilainen, P., Reinikainen, K., & Sokolov, E. N. (1988). Frequency and location specificify of the human vertex N1 wave. Electroencephalography and Clinical Neurophysiology, 69(6), 523-531. DOI: 10.1016/0013-4694(88)90164-2
  106. Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). ‘Primitive intelligence’ in the auditory cortex. Trends in Neurosciences, 24(5), 283-288. DOI: 10.1016/s0166-2236(00)01790-2
  107. Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125(6), 826. DOI: 10.1037/0033-2909.125.6.826
  108. Öhman, A., Lader, M. (1977). Short-term changes of the human auditory evoked potentials during repetitive stimulation. In J. E. Desmedt (eds.). Auditory evoked potentials in man. Psychopharmacology correlates of EPs. Progress in clinical neurophysiology (Vol. 2, pp. 93-118). Basel: Karger.
  109. Omidvarnia, A., Pedersen, M., Walz, J. M., Vaughan, D. N., Abbott, D. F., & Jackson, G. D. (2016). Dynamic regional phase synchrony (DRePS) An Instantaneous Measure of Local fMRI Connectivity Within Spatially Clustered Brain Areas. Human Brain Mapping, 37(5), 1970-1985. DOI: 10.1002/hbm.23151
  110. Pallesen K. J., Brattico E., Bailey C. J., Korvenoja A., Koivisto J., Gjedde A. et al. (2010) Cognitive Control in Auditory Working Memory Is Enhanced in Musicians. PLoS One 5(6): e11120. DOI: 10.1371/journal.pone.0011120
  111. Parga, J. J., Daland, R., Kesavan, K., Macey, P. M., Zeltzer, L., & Harper, R. M. (2018). A description of externally recorded womb sounds in human subjects during gestation. PloS One, 13(5), e0197045. DOI: 10.1371/journal.pone.0197045
  112. Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage, 50(1), 302-313. DOI: 10.1016/j.neuroimage.2009.12.019
  113. Peck, K. J., Girard, T. A., Russo, F. A., & Fiocco, A. J. (2016). Music and memory in Alzheimer’s disease and the potential underlying mechanisms. Journal of Alzheimer’s Disease, 51(4), 949-959. DOI: 10.3233/JAD-150998
  114. Picton, T. W., Woods, D. L., Baribeau-Braun, J., & Healey, T. M. (1977). Evoked potential audiometry. J Otolaryngol, 6(2), 90-119.
  115. Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41-54. DOI: 10.1016/j.neuroimage.2016.12.061
  116. Tervaniemi, M., & Hugdahl, K. (2003). Lateralization of auditory-cortex functions. Brain Research Reviews, 43(3), 231-246. DOI: 10.1016/j.brainresrev.2003.08.004
  117. Quiroga-Martinez, D. R., Hansen, N. C., Højlund, A., Pearce, M. T., Brattico, E., & Vuust, P. (2019). Reduced prediction error responses in highas compared to low-uncertainty musical contexts. Cortex, 120, 181-200.
  118. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79-87. DOI: 10.1038/4580
  119. Reybrouck, M., Vuust, P., & Brattico, E. (2018). Music and brain plasticity: how sounds trigger neurogenerative adaptations. Neuroplasticity Insights of Neural Reorganization, 85. DOI: 10.5772/intechopen.74318
  120. Rinne, T., Alho, K., Ilmoniemi, R. J., Virtanen, J., & Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage, 12(1), 14-19. DOI: 10.1006/nimg.2000.0591
  121. Ross, S., & Hansen, N. C. (2016). Dissociating prediction failure: Considerations from music perception. Journal of Neuroscience, 36(11), 3103e3105. DOI: 10.1523/JNEUROSCI.0053-16
  122. Sakoğlu, Ü., Pearlson, G. D., Kiehl, K. A., Wang, Y. M., Michael, A. M., & Calhoun, V. D. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6), 351-366. DOI: 10.1007/s10334-010-0197-8
  123. Salmi, J., Pallesen, K. J., Neuvonen, T., Brattico, E., Korvenoja, A., Salonen, O., & Carlson, S. (2010). Cognitive and motor loops of the human cerebro-cerebellar system. Journal of Cognitive Neuroscience, 22(11), 2663-2676. DOI: 10.1162/jocn.2009.21382
  124. Sams, M., Hämäläinen, M., Antervo, A., Kaukoranta, E., Reinikainen, K., & Hari, R. (1985). Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography and Clinical Neurophysiology, 61(4), 254-266. DOI: 10.1016/0013-4694(85)91092-2
  125. Schulze, K., Zysset, S., Mueller, K., Friederici, A. D., & Koelsch, S. (2011). Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Human Brain Mapping, 32(5), 771-783. DOI: 10.1002/hbm.21060
  126. Seashore, C. E. (1937). The psychology of music. Music Educators Journal, 23(4), 30-33. DOI: 10.2307/3384578
  127. Serkov, F. N., Leonova, E. F., & Shelest, I. I. (1969). Evoked potentials of the auditory cortex on paired stimuli. Neurophysiology, 1(1), 42-49.
  128. Simon, J., Balla, V., & Winkler, I. (2019). Temporal boundary of auditory event formation: An electrophysiological marker. International Journal of Psychophysiology, 140, 53-61. DOI: 10.1016/j.ijpsycho.2019.04.006
  129. Sloboda, J. A. (1985). Immediate recall of melodies. Musical Structure and Cognition, 143-167.
  130. Snyder, B. (2009). Memory for music. The Oxford Handbook of Music Psychology, 107-117. DOI: 10.1093/oxfordhb/9780199298457.013.0010
  131. Sperling, G. (1963). A model for visual memory tasks. Human Factors, 5(1), 19-31. DOI: 10.1177%2F001872086300500103
  132. Sporns, O. (2012). Discovering the human connectome. Cambridge, MA: MIT press.
  133. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276-315. DOI: 10.1016/0001-6918(69)90055-9
  134. Tan, X. D., Yu, X. F., Lin, L., & Wang, T. (2015). Simulation on the comparison of steady-state responses synthesized by transient templates based on superposition hypothesis. Computational and Mathematical Methods in Medicine, 2015. DOI: 10.1155/2015/476050
  135. Tervaniemi, M., Alho, K., Paavilainen, P., Sams, M., & Näätänen, R. (1993). Absolute pitch and event-related brain potentials. Music Perception, 10(3), 305-316. DOI: 10.2307/40285572
  136. Tervaniemi, M., Huotilainen, M., & Brattico, E. (2014). Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 8, 496. DOI: 10.3389/fnhum.2014.00496
  137. Tervaniemi, M., Ilvonen, T., Karma, K., Alho, K., & Näätänen, R. (1997). The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects. Neuroscience Letters, 226(1), 1-4. DOI: 10.1016/s0304-3940(97)00217-6
  138. Tesche, C. D., & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences, 97(2), 919-924. DOI: 10.1073/pnas.97.2.919
  139. Thompson, R. F., Groves, P. M., Teyler, T. J., & Roemer, R. A. (1973). A dual-process theory of habituation: Theory and behavior. In Habituation: Behavioral Studies and Physiological Substrates (Vol. 1, pp. 239-271). Academic Press, New York.
  140. Thompson, R. F., & Spencer, W. A. (1966). Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16. DOI: 10.1037/h0022681
  141. Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: an MEG study. Journal of Neuroscience, 31(25), 9118-9123. DOI: 10.1523/jneurosci.1425-11.2011
  142. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55-61. DOI: 10.1038/nrn3857
  143. Van Den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519-534. DOI: 10.1016/j.euroneuro.2010.03.008
  144. Vanstone, A. D., & Cuddy, L. L. (2009). Musical memory in Alzheimer disease. Aging, Neuropsychology, and Cognition, 17(1), 108-128. DOI: 10.1080/13825580903042676
  145. Vuust, P., Brattico, E., Glerean, E., Seppänen, M., Pakarinen, S., Tervaniemi, M., & Näätänen, R. (2011). New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 47(9), 1091-1098. DOI: 10.1016/j.cortex.2011.04.026
  146. Vuust, P., Brattico, E., Seppänen, M., Näätänen, R., & Tervaniemi, M. (2012). The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 50(7), 1432-1443. DOI: 10.1016/j.neuropsychologia.2012.02.028
  147. Vuust, P., Heggli, O. A., Friston, K. J., & Kringelbach, M. L. (2022). Music in the brain. Nature Reviews Neuroscience, 1-19. DOI: 10.1038/s41583-022-00578-5
  148. Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C., & Roepstorff, A. (2009). Predictive coding of music–brain responses to rhythmic incongruity. Cortex, 45(1), 80-92. DOI: 10.1016/j.cortex.2008.05.014
  149. Vuust, P., Witek, M., Dietz, M., & Kringelbach, M. L. (2018). Now you hear it: A novel predictive coding model for understanding rhythmic incongruity. Annals of the New York Academy of Sciences, 1e11. DOI: 10.1111/nyas.13622
  150. Winkler, I., Denham, S. L., & Nelken, I. (2009). Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13(12), 532-540. DOI: 10.1016/j.tics.2009.09.003
  151. Woods, D. L., & Elmasian, R. (1986). The habituation of event-related potentials to speech sounds and tones. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 65(6), 447-459. DOI: 10.1016/0168-5597(86)90024-9
  152. Zacharias, N., König, R., & Heil, P. (2012). Stimulation‐history effects on the M 100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology, 49(7), 909-919. DOI: 10.1111/j.1469-8986.2012.01370.x
  153. Zatorre, R. J. (2003). Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6(7), 692-695. DOI: 10.1038/nn1085
  154. Zhao, L., Zeng, W., Shi, Y., Nie, W., & Yang, J. (2020). Dynamic visual cortical connectivity analysis based on functional magnetic resonance imaging. Brain and Behavior, 10(7), e01698. DOI: 10.1002/brb3.1698

  • Proof-of-Concept Study on the Use of Virtual Reality with Evocative and Aesthetic Content for Elderly Individuals with Cognitive Decline Francesco Carlomagno, Vitoantonio Bevilacqua, Antonio Brunetti, Elena Sibilano, Marianna Delussi, Mariangela Lippolis, Raffaele Diomede, Elvira Brattico, in Applied Sciences /2025 pp.4627
    DOI: 10.3390/app15094627
  • Magnetoencephalography recordings reveal the spatiotemporal dynamics of recognition memory for complex versus simple auditory sequences Gemma Fernández-Rubio, Elvira Brattico, Sonja A. Kotz, Morten L. Kringelbach, Peter Vuust, Leonardo Bonetti, in Communications Biology 1272/2022
    DOI: 10.1038/s42003-022-04217-8

Fulvia Francesca Campo, Elvira Brattico, Remembering sounds in the brain: From locationist findings to dynamic connectivity research in "RIVISTA DI PSICOLOGIA CLINICA" 2/2022, pp 7-39, DOI: 10.3280/rpc2-2022oa14002