Epigenetics, an overview

Journal title PNEI REVIEW
Author/s Francesco Bottaccioli, Anna Giulia Bottaccioli
Publishing Year 2023 Issue 2023/1
Language Italian Pages 27 P. 8-34 File size 1243 KB
DOI 10.3280/PNEI2023-001002
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

The last ten years of epigenetic research can be summarized in three main lines. We have advances in our knowledge of 1) epigenetic mechanisms, especially the immense world of non-coding RNAs; 2) the epigenetics of early life, transgenerational epigenetics included; 3) the molecular effects of mental states and non-pharmacological therapies (such as psychothera- py and stress management techniques) and behavior (nutrition and physi- cal activity). The article, which is based on the second edition of the book Epigenetica e Psiconeuroendocrinoimmunologia, written by the authors, will review these topics with the aim of providing an overview of the state of research in the field of epigenetics.

Keywords: Epigenetics, Epigenetics mechanisms, Early life, Mental states and epigenetics marker, Transgenerational epigenetics, Behavioral and ther- apeutics epigenetics.

  1. Anway M.D., Cupp A.S., Uzumcu M., & Skinner M.K. (2005). Epigenetic Transgenera- tional Actions of Endocrine Disruptors and Male Fertility. Science, 308(5727), 1466–1469.
  2. Barberet J., Ducreux B., Guilleman M., Simon E., Bruno C., & Fauque P. (2022). DNA methylation profiles after ART during human lifespan: a systematic review and meta-analysis. Human Reproduction Update, 28(5), 629–655.
  3. Barrón-Cabrera E., González-Becerra K., Rosales-Chávez G., Mora-Jiménez A., Her- nández-Cañaveral I., & Martínez-López E. (2020). Low-grade chronic inflammation is atte- nuated by exercise training in obese adults through down-regulation of ASC gene in peripheral blood: a pilot study. Genes & Nutrition, 15(1), 15.
  4. Batista P.J., & Chang H.Y. (2013). Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell, 152(6), 1298–1307.
  5. Bermick J., & Schaller M. (2022). Epigenetic regulation of pediatric and neonatal immune responses. Pediatric Research, 91(2), 297–327.
  6. cardin C., Manuella F., & Mansuy I.M. (2022). Paternal transmission of beha- vioural and metabolic traits induced by postnatal stress to the 5th generation in mice. Environmental Epigenetics, 8(1), dvac024.
  7. Bottaccioli A.G., Bottaccioli F., Carosella A., Cofini V., Muzi P., & Bologna M. (2020). Psychoneuroendocrinoimmunology-based meditation (PNEIMED) training reduces salivary cortisol under basal and stressful conditions in healthy university stu- dents: Results of a randomized controlled study. EXPLORE, 16(3), 189–198.
  8. Bottaccioli A.G., Bottaccioli F., & Minelli A. (2019). Stress and the psyche-brain-immu- ne network in psychiatric diseases based on psychoneuroendocrineimmunology: a concise review: Psychoneuroendocrineimmunology of psychiatric diseases. Annals of the New York Academy of Sciences, 1437(1), 31–42.
  9. Bottaccioli F., & Bottaccioli A.G. (2023). Epigenetica e Psiconeuroendocrinoimmunologia, 2 ed. ampliata. Milano: Edra.
  10. Bottaccioli F., Carosella A., Cardone R., Mambelli M., Cemin M., D’Errico M.M., Ponzio E., Bottaccioli A.G., & Minelli A. (2014). Brief Training of Psychoneuroen- docrinoimmunology-Based Meditation (PNEIMED) Reduces Stress Symptom Ratings and Improves Control on Salivary Cortisol Secretion Under Basal and Stimulated Con- ditions. EXPLORE, 10(3), 170–179.
  11. Brown W.M. (2015). Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. British Journal of Sports Medicine, 49(24), 1567–1578.
  12. Cannarella R., Crafa A., Mongioì L.M., Leggio L., Iraci N., La Vignera S., Con- dorelli R.A., & Calogero A.E. (2022). DNA Methylation in Offspring Conceived after Assisted Reproductive Techniques: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 11(17), 5056.
  13. Chen M., & Lacey R.E. (2018). Adverse childhood experiences and adult inflammation: Findings from the 1958 British birth cohort. Brain, Behavior, and Immunity, 69, 582–590.
  14. Chen T.H.-H., Chiu Y.-H., & Boucher B.J. (2006). Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. The American Journal of Clinical Nutrition, 83(3), 688–692.
  15. Choi W.-Y., Hwang J.-H., Cho A.-N., Lee A.J., Lee J., Jung I., Cho S.-W., Kim L.K., & Kim Y.-J. (2020). DNA Methylation of Intragenic CpG Islands are Required for Differentiation from iPSC to NPC. Stem Cell Reviews and Reports, 16(6), 1316– 1327.
  16. Chun P. (2021). Histone deacetylase inhibitors in medical therapeutics. In: Tollefsbol T.O. (Ed.), Medical Epigenetics (pp. 597–632). London, United Kingdom: Academic Press. DOI: 10.1016/B978-0-12-823928-5.00029-
  17. Cole S.W., Levine M.E., Arevalo J.M.G., Ma J., Weir D.R., & Crimmins E.M. (2015). Loneliness, eudaimonia, and the human conserved transcriptional response to adversity. Psychoneuroendocrinology, 62, 11–17.
  18. Cornuti S., Chen S., Lupori L., Finamore F., Carli F., Samad M., Fenizia S., Caldarelli M., Damiani F., Raimondi F., Mazziotti R., Magnan C., Rocchiccioli S., Gastaldelli A., Baldi P., & Tognini P. (2023). Brain histone beta-hydroxybutyryla- tion couples metabolism with gene expression. Cellular and Molecular Life Sciences, 80(1), 28.
  19. Darwin C. (1868). The variation of animals and plants under domestication. London: John Murray.
  20. Dick A., & Chen A. (2021). The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiology of Stress, 15, 100352.
  21. Duncan G.E., Avery A., Thorson J.L.M., Nilsson E.E., Beck D., & Skinner M.K. (2022). Epigenome-wide association study of physical activity and physiological parameters in discor- dant monozygotic twins. Scientific Reports, 12(1), 20166.
  22. Eissenberg J.C. (2021). Medical epigenetics and twins. In: Tollefsbol T.O. (Ed.), Medical Epigenetics (pp. 103–116). London, United Kingdom: Academic Press. DOI: 10.1016/B978-0-12-823928-5.00035-
  23. Fauque P., De Mouzon J., Devaux A., Epelboin S., Gervoise-Boyer M.-J., Levy R., Valentin M., Viot G., Bergère A., De Vienne C., Jonveaux P., & Pessione F. (2020). Reproductive technologies, female infertility, and the risk of imprinting-related disorders. Clinical Epigeneti- cs, 12(1), 191.
  24. Gauvrit T., Benderradji H., Buée L., Blum D., & Vieau D. (2022). Early-Life Environment Influence on Late-Onset Alzheimer’s Disease. Frontiers in Cell and Developmental Biology, 10, 834661.
  25. GENCODE. (2022). GENCODE - Human Release Statistics. GENCODE. -- https://www.gen- codegenes.org/human/stats.html recuperato 09 aprile 2023
  26. Guo X.-Y., Liu X.-M., Jin L., Wang T.-T., Ullah K., Sheng J.-Z., & Huang H.-F. (2017). Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive tech- nologies: a systematic review and meta-analysis. Fertility and Sterility, 107(3), 622-631.e5.
  27. Hiura H., Okae H., Miyauchi N., Sato F., Sato A., Van De Pette M., John R.M., Kagami M., Nakai K., Soejima H., Ogata T., & Arima T. (2012). Characterization of DNA methyla- tion errors in patients with imprinting disorders conceived by assisted reproduction technolo- gies. Human Reproduction, 27(8), 2541–2548.
  28. Iamsawat S., Tian L., Daenthanasanmak A., Wu Y., Nguyen H.D., Bastian D., & Yu X.-Z. (2019). Vitamin C stabilizes CD8+ iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Advances, 3(24), 4187–4201.
  29. Kaati G., Bygren L.O., Pembrey M., & Sjöström M. (2007). Transgenerational response to nutrition, early life circumstances and longevity. European Journal of Human Genetics, 15(7), 784–790.
  30. Kleeman E.A., Gubert C., & Hannan A.J. (2022). Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends in Genetics, 38(7), 662–675.
  31. Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T., Tanaka S., Bluestone J.A., & Takayanagi H. (2014). Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nature Medicine, 20(1), 62–68.
  32. Lam J.A., Murray E.R., Yu K.E., Ramsey M., Nguyen T.T., Mishra J., Martis B., Thomas M.L., & Lee E.E. (2021). Neurobiology of loneliness: a systematic review. Neu- ropsychopharmacology, 46(11), 1873–1887.
  33. Lazzari D. (2019). La psiche tra salute e malattia: evidenze ed epidemiologia. Milano: Edra. Lee Y., Dho S.H., Lee J., Hwang J.-H., Kim M., Choi W.-Y., Lee J.-Y., Lee J., Chang W., Lee M.Y., Choi J., Kim T.-Y., & Kim L.K. (2022). Hypermethylation
  34. of PDX1, EN2, and MSX1 predicts the prognosis of colorectal cancer. Experimental & Molecular Medicine, 54(2), 156–168.
  35. Lê-Scherban F., Wang X., Boyle-Steed K.H., & Pachter L.M. (2018). Intergene- rational Associations of Parent Adverse Childhood Experiences and Child Health Outcomes. Pediatrics, 141(6), e20174274.
  36. Lopresti A.L. (2017). Cognitive behaviour therapy and inflammation: A systematic review of its relationship and the potential implications for the treatment of depres- sion. Australian & New Zealand Journal of Psychiatry, 51(6), 565–582. DOI: 10.1177/000486741770199
  37. Lu Y.-C., Andescavage N., Wu Y., Kapse K., Andersen N.R., Quistorff J., Saeed H., Lopez C., Henderson D., Barnett S.D., Vezina G., Wessel D., du Plessis A., & Limperopoulos C. (2022). Maternal psychological distress during the CoViD-19 pandemic and structural changes of the human fetal brain. Communications Medicine, 2(1), 47.
  38. Luo J., Tan X., Li H., & Ding X. (2022). sncRNAs in Epididymosomes: The Con- tribution to Embryonic Development and Offspring Health. International Journal of Molecular Sciences, 23(18), 10851.
  39. Magaña-Acosta M., & Valadez-Graham V. (2020). Chromatin Remodelers in the 3D Nuclear Compartment. Frontiers in Genetics, 11, 600615.
  40. Mansuy I.M., Mashoodh R., & Champagne F.A. (2013). Transgenerational Inheri- tance in Mammals. In: Sweatt J.D., Meaney M.J., Nestler E.J., & Akbarian S. (Eds.), Epigenetic Regulation in the Nervous System (pp. 323–338). London, United King- dom: Academic Press. DOI: 10.1016/B978-0-12-391494-1.00013-
  41. Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y., Chen L.-L., Chen R., Dean C., Dinger M.E., Fitzgerald K.A., Gingeras T.R., Guttman M., Hirose T., Huarte M., Johnson R., Kanduri C., Kapranov P., Lawrence J.B., Lee J.T., Mendell J.T., Mercer T.R., Moore K.J., Nakagawa S., Rinn J.L., Spector D.L., Ulitsky I., Wan Y., Wilusz J.E., & Wu M. (2023). Long non-coding RNAs: definitions, functions, challenges and recommendations. Nature Reviews Molecular Cell Biology.
  42. Meaney M.J., Akbarian S., Nestler E.J., & Sweatt J.D. (2013). Epigenetics: defining
  43. the frontiers of genomics function. In: Sweatt J.D., Meaney M.J., Nestler E.J., & Akbarian
  44. S. (Eds.), Epigenetic Regulation in the Nervous System (pp. 341–353). London, United Kingdom: Academic Press. DOI: 10.1016/B978-0-12-391494-1.00014-
  45. Ota S., & Sakuraba H. (2022). Uptake and Advanced Therapy of Butyrate in Inflam- matory Bowel Disease. Immuno, 2(4), 692–702.
  46. Palma-Gudiel H., Córdova-Palomera A., Eixarch E., Deuschle M., & Fañanás L. (2015). Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigeneti- cs, 10(10), 893–902. DOI: 10.1080/15592294.2015.108863
  47. Pourriyahi H., Yazdanpanah N., Saghazadeh A., & Rezaei N. (2021). Loneliness: An Immunometabolic Syndrome. International Journal of Environmental Research and Public Health, 18(22), 12162.
  48. Premnath N., Chung S.S., Weinberg O.K., Ikpefan R., Pandey M., Kaur G., Ge- ethakumari P.R., Afrough A., Awan F.T., Anderson L.D., Vusirikala M., Collins R.H., Chen W., Agathocleous M., & Madanat Y.F. (2023). Clinical and molecular characteristics associated with Vitamin C deficiency in myeloid malignancies; real world data from a prospective cohort. Leukemia Research, 125, 107001.
  49. Rodriguez-Wallberg K.A., Lundberg F.E., Ekberg S., Johansson A.L.V., Ludvigs- son J.F., Almqvist C., Cnattingius S., & Iliadou A.N. (2020). Mortality from infan- cy to adolescence in singleton children conceived from assisted reproductive techni- ques versus naturally conceived singletons in Sweden. Fertility and Sterility, 113(3), 524–532.
  50. Schenk A., Proschinger S., & Zimmer P. (2021). Epigenetics in exercise science and sports medicine. In: Tollefsbol T.O. (Ed.), Medical Epigenetics (pp. 491–509). London, United Kingdom: Academic Press.
  51. Sun J., Patel F., Rose-Jacobs R., Frank D.A., Black M.M., & Chilton M. (2017). Mothers’ Adverse Childhood Experiences and Their Young Children’s Development. American Journal of Preventive Medicine, 53(6), 882–891.
  52. Swinford-Jackson S.E., Fant B., Wimmer M.E., Chan D., Knouse M.C., Sarmiento M., Thomas A.S., Huffman P.J., Mankame S., Worobey S.J., & Pierce R.C. (2022). Cocaine-Induced Changes in Sperm Cdkn1a Methylation Are Associated with Cocaine Resistance in Male Offspring. The Journal of Neuroscience, 42(14), 2905–2916. DOI: 10.1523/JNEUROSCI.3172-20.202
  53. Szyf M. (2021). Perinatal stress and epigenetics. In: Swaab D.F., Kreier F., Lucassen P.J., Salehi A., & Buijs R.M. (Eds.), Handbook of Clinical Neurology (Vol. 180, pp. 125–148). Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-820107-7.00008-
  54. Szyf M., McGowan P., & Meaney M.J. (2008). The social environment and the epigenome. Environmental and Molecular Mutagenesis, 49(1), 46–60.
  55. The ALSPAC Study Team, Pembrey M.E., Bygren L.O., Kaati G., Edvinsson S., Northstone K., Sjöström M., & Golding J. (2006). Sex-specific, male-line transge- nerational responses in humans. European Journal of Human Genetics, 14(2), 159–166.
  56. Tollefsbol T.O. (Ed.). (2021). Medical epigenetics (Second edition). London, United Kingdom: Academic Press, an imprint of Elsevier.
  57. Vaiserman A.M., & Koliada A.K. (2017). Early-life adversity and long-term neurobehavioral outcomes: epigenome as a bridge? Human Genomics, 11(1), 34.
  58. Vinkers C.H., Geuze E., van Rooij S.J.H., Kennis M., Schür R.R., Nispeling D.M., Smi- th A.K., Nievergelt C.M., Uddin M., Rutten B.P.F., Vermetten E., & Boks M.P. (2021). Successful treatment of post-traumatic stress disorder reverses DNA methylation marks. Molecular Psychiatry, 26(4), 1264–1271.
  59. White S.L., Vassoler F.M., Schmidt H.D., Pierce R.C., & Wimmer M.E. (2016). Enhanced anxiety in the male offspring of sires that self-administered cocaine: Anxiety in cocaine-sired rats. Addiction Biology, 21(4), 802–810.
  60. Wijs L.A., Doherty D.A., Keelan J.A., Burton P., Yovich J.L., Beilin L., Mori T.A., Huang R.C., Adams L.A., Olynyk J.K., Ayonrinde O.T., Penova-Veselinovic B., & Hart R.J. (2022). Comparison of the cardiometabolic profiles of adolescents conceived through ART with those of a non-ART cohort. Human Reproduction, 37(8), 1880–1895.
  61. Yang C., Zeng Q., Liu J., Yeung W.S., Zhang J.V., & Duan Y. (2023). Role of small RNAs harbored by sperm in embryonic development and offspring phenotype. Andro- logy, 11(4), 770–782.
  62. Yehuda R., Daskalakis N.P., Desarnaud F., Makotkine I., Lehrner A.L., Koch E., Flory J.D., Buxbaum J.D., Meaney M.J., & Bierer L.M. (2013). Epigenetic Biomar- kers as Predictors and Correlates of Symptom Improvement Following Psychotherapy in Combat Veterans with PTSD. Frontiers in Psychiatry, 4.
  63. Zhan W., Li Y., Yuan J., Zhi N., Huang Y., Liu Y., Zhang M., Wu S., & Zhao X. (2022). New Insights into TETs in Psychiatric Disorders. International Journal of Molecular Sciences, 23(9), 4909.

Francesco Bottaccioli, Anna Giulia Bottaccioli, Epigenetica, una overview in "PNEI REVIEW" 1/2023, pp 8-34, DOI: 10.3280/PNEI2023-001002