The Dose-response Function Approach for the Evaluation of Continuous Treatments in R&D Subsidies

Author/s Chiara Bocci, Marco Mariani
Publishing Year 2015 Issue 2015/3 Suppl. Language Italian
Pages 22 P. 81-102 File size 386 KB
DOI 10.3280/SCRE2015-S03005
DOI is like a bar code for intellectual property: to have more infomation click here

Below, you can see the article first page

If you want to buy this article in PDF format, you can do it, following the instructions to buy download credits

Article preview

FrancoAngeli is member of Publishers International Linking Association, Inc (PILA), a not-for-profit association which run the CrossRef service enabling links to and from online scholarly content.

A recent stream in the program evaluation literature has focussed on the estimation of causal effects in the presence of continuous treatments. Dose-response functions based on propensity-score methodologies can be employed, under the unconfoundedness assumption, to perform this analysis. An interesting area of application is that of r&d subsidisation programmes, where little is known about what is the right size of subsidies or of the underlying private investments to be targeted. Focussing on a regional small-business r&d programme implemented in Italy, we estimate a flexible dose-response function and find a roughly inverse U-shaped relation between subsidy and future r&d investment.

Keywords: R&d subsidies; dose-response functions; generalized propensity score.

Jel codes: C21, L53, O38

  1. M., Pfeiffer F. (eds.), Econometric Evaluations of Active Labor Market Policies in Europe. Heidelberg: Physica, 43-58.
  2. Abadie A., 2005, «Semiparametric Difference-in-Differences Estimators». The Review of Economic Studies, 72, 1: 1-19. DOI: 10.1111/0034-6527.00321
  3. Adorno V., Bernini C., Pellegrini G., 2007, «The Impact of Capital Subsidies: New Estimations under Continuous Treatment». Giornale degli Economisti e Annali di Economia, 66, 1: 67-92.
  4. Altman E.I., Sabato G., 2007, «Modelling Credit Risk for SMEs: Evidence from the us Market». Abacus, 43, 3: 332-357. DOI: 10.1111/j.1467-6281.2007.00234.x
  5. Antonioli D., Marzucchi A., Montresor S., 2014, «Regional Innovation Policy and Innovative Behaviour: Looking for Additional Effects». European Planning Studies, 22, 1: 64-83. DOI: 10.1080/09654313.2012.722977
  6. Arpino B., Mattei A., 2013, Assessing the Impact of Financial Aids to Firms: Causal Inference in the Presence of Interference. mpra paper n. 51795.
  7. Aschhoff B., 2009, The Effect of Subsidies on R&D Investment and Success: Do Subsidy History and Size Matter? zew Discussion Papers, n. 09-032.
  8. Athey S., Imbens G.W., 2006, «Identification and Inference in Nonlinear Difference-in-Differences Models». Econometrica, 74, 2: 431-497. DOI: 10.1111/j.1468-0262.2006.00668.x
  9. Bernini C., Pellegrini G., 2011, «How Are Growth and Productivity in Private Firms Affected by Public Subsidy? Evidence from a Regional Policy». Regional Science and Urban Economics, 41, 3: 253-265. DOI: 10.1016/j.regsciurbeco.2011.01.005
  10. Bia M., Flores C. A., Flores-Lagunes A., Mattei A., 2014, «A Stata Package for the Application of Semiparametric Estimators of Dose–Response Functions». Stata Journal, 14, 3: 580-604.
  11. Bia M., Mattei A., 2012, «Assessing the Effect of the Amount of Financial Aids to Piedmont Firms Using the Generalized Propensity Score». Statistical Methods & Applications, 21, 4: 485-516. DOI: 10.1007/s10260-012-0193-4
  12. Bondonio D., 2008, «La valutazione integrata delle diverse tipologie di aiuto». In: De Blasio G., Lotti F. (a cura di), La valutazione degli aiuti alle imprese. Bologna: il Mulino, 185-225.
  13. Bronzini R., Iachini E., 2014, «Are Incentives for r&d Effective? Evidence from a Regression Discontinuity Approach». American Economic Journal: Economic Policy, 6, 4: 100-134. DOI: 10.1257/pol.6.4.100
  14. Caliendo M., Kopeinig S., 2008, «Some Practical Guidance for the Implementation of Propensity Score Matching». Journal of Economic Surveys, 22, 1: 31-72. DOI: 10.1111/j.1467-6419.2007.00527.x
  15. Cerqua A., Pellegrini G., 2014a, «Do Subsidies to Private Capital Boost Firms’ Growth? A Multiple Regression Discontinuity Design Approach». Journal of Public Economics, 109: 114-126. DOI: 10.1016/j.jpubeco.2013.11.005
  16. Cerqua A., Pellegrini G., 2014b, «Spillovers and Policy Evaluation». In: Mazzola F., Musolino D., Provenzano V. (a cura di), Reti, nuovi settori e sostenibilità. Milano: FrancoAngeli, 353-370.
  17. Cerulli G., Poti B., 2012, «Evaluating the Robustness of the Effect of Public Subsidies on Firms’ r&d: An Application to Italy». Journal of Applied Economics, 15, 2: 287-320. DOI: 10.1016/S1514-0326(12)60013-0
  18. Cusimano A., Mazzola F., 2014, «Valutazione ex-post dei progetti integrati territoriali: un’analisi empirica a livello di impresa». In: Mazzola F., Musolino D., Provenzano V. (a cura di), Reti, nuovi settori e sostenibilità. Milano: FrancoAngeli, 371-396.
  19. Dai X., Cheng L., 2015, «The Effect of Public Subsidies on Corporate r&d Investment: An Application of the Generalized Propensity Score». Technological Forecasting and Social Change, 90: 410-419. DOI: 10.1016/j.techfore
  20. 2014.04.014. De Blasio G., Fantino D., Pellegrini G., 2014, «Evaluating the Impact of Innovation Incentives: Evidence From an Unexpected Shortage of Funds». Industrial and Corporate Change. DOI: 10.1093/icc/dtu027
  21. De Castris M., 2013, «Valutazione dell’efficacia dei sussidi per la ricerca e sviluppo: un’analisi empirica per l’Italia». In: Fratesi U., Pellegrini G. (a cura di), Territorio, Istituzioni e Crescita. Milano: FrancoAngeli, 130-149.
  22. De Castris M., Pellegrini G., 2012, «Evaluation of Spatial Effects of Capital Subsidies in the South of Italy». Regional Studies, 46, 4: 525-538. DOI: 10.1080/00343404.2010.509130
  23. Di Gennaro D., 2013, «Gli incentivi alla ricerca e sviluppo: valutazione degli effetti sulle imprese in Umbria». Eyes Reg, 3, 6.
  24. Flores C.A., Flores-Lagunes A., Gonzalez A., Neumann T.C., 2012, «Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps». The Review of Economics and Statistics, 94, 1: 153-171. DOI: 10.1162/REST_a_00177
  25. Gabriele R., Zamarian M., Zaninotto E., 2007, «Gli effetti degli incentivi pubblici agli investimenti industriali sui risultati di impresa: il caso del Trentino». L’Industria, 28, 2: 265-280. DOI: 10.1430/24640
  26. Gorg H., Strobl E., 2007, «The Effect of r&d Subsidies on Private r&d». Economica, 74, 294: 215-234. DOI: 10.1111/j.1468-0335.2006.00547.x
  27. Hirano K., Imbens G.W., 2004, «The Propensity Score with Continuous Treatments ». In: Gelman A., Meng X.-L. (eds.), Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Hoboken: Wiley, 73-84.
  28. Imbens G.W., Rubin D.B., 2015, Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. New York: Cambridge U.P.
  29. Imbens G.W., 2000, «The Role of the Propensity Score in Estimating Dose-Response Functions». Biometrika, 87, 3: 706-710. DOI: 10.1093/biomet/87.3.706
  30. Imbens G.W., 2004, «Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review». Review of Economics and Statistics, 86, 1: 4-29. DOI: 10.1162/003465304323023651
  31. Imbens G.W., Wooldridge J.M., 2009, «Recent Developments in the Econometrics of Program Evaluation». Journal of Economic Literature, 47, 1: 5-86. DOI: 10.1257/jel.47.1.5
  32. Lechner M., 2001, «Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption» In: Lechner
  33. Merito M., Giannangeli S., Bonaccorsi A., 2010, «Do Incentives to Industrial r&d Enhance Research Productivity and Firm Growth? Evidence from the Italian Case». International Journal of Technology Management, 49, 1-3: 25-48. DOI: 10.1504/ijtm.2010.029409
  34. Newey W.K., 1994, «Kernel Estimation of Partial Means and a General Variance Estimator». Econometric Theory, 10, 2: 1-21. DOI: 10.1017/S0266466600008409
  35. Rosenbaum P.R., Rubin D.B., 1983, «The Central Role of the Propensity Score in Observational Studies for Causal Effects». Biometrika, 70, 1: 41-55. DOI: 10.1093/biomet/70.1.41
  36. Rosenbaum P.R., Rubin D.B., 1985, «Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score». The American Statistician, 39, 1: 33-38. DOI: 10.1080/00031305.1985.10479383
  37. Rubin D.B., 1974, «Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies». Journal of Educational Psychology, 66, 5: 668-701. DOI: 10.1037/h0037350
  38. Rubin D.B., 1980, «Comment on ‘Randomization Analysis of Experimental Data: The Fisher Randomization Test’ by D. Basu». Journal of the American Statistical Association, 75, 371: 591-593. DOI: 10.2307/2287653
  39. Zuniga-Vicente J.A., Alonso-Borrego C., Forcadell F.J., Galan J.I., 2014, «Assessing the Effect of Public Subsidies on Firm r&d Investment: A Survey». Journal of Economic Surveys, 28, 1: 36-67. DOI: 10.1111/j.1467-6419.2012.00738.x

  • The Effects of R&D Subsidies to Small and Medium-Sized Enterprises. Evidence from a Regional Program Marco Mariani, Fabrizia Mealli, in Italian Economic Journal /2018 pp.249
    DOI: 10.1007/s40797-017-0062-2
  • A comparative evaluation of regional subsidies for collaborative and individual R&D in small and medium-sized enterprises Annalisa Caloffi, Marco Mariani, Federica Rossi, Margherita Russo, in Research Policy /2018 pp.1437
    DOI: 10.1016/j.respol.2018.04.022
  • Place-based policy in southern Italy: evidence from a dose–response approach Alessandro Cusimano, Fabio Mazzola, Sylvain Barde, in Regional Studies /2021 pp.1442
    DOI: 10.1080/00343404.2021.1902974

Chiara Bocci, Marco Mariani, L’approccio delle funzioni dose-risposta per la valutazione di trattamenti continui nei sussidi alla r&s in "SCIENZE REGIONALI " 3 Suppl./2015, pp 81-102, DOI: 10.3280/SCRE2015-S03005