Le modifi cazioni epigenetiche. Un aspetto a lungo ignorato negli studi atti a valutare le interazioni geni-ambiente nella malattia di Alzheimer

Titolo Rivista PNEI REVIEW
Autori/Curatori Fabio Coppedè
Anno di pubblicazione 2023 Fascicolo 2023/1 Lingua Italiano
Numero pagine 15 P. 53-67 Dimensione file 1124 KB
DOI 10.3280/PNEI2023-001004
Il DOI è il codice a barre della proprietà intellettuale: per saperne di più clicca qui

Qui sotto puoi vedere in anteprima la prima pagina di questo articolo.

Se questo articolo ti interessa, lo puoi acquistare (e scaricare in formato pdf) seguendo le facili indicazioni per acquistare il download credit. Acquista Download Credits per scaricare questo Articolo in formato PDF

Anteprima articolo

FrancoAngeli è membro della Publishers International Linking Association, Inc (PILA)associazione indipendente e non profit per facilitare (attraverso i servizi tecnologici implementati da CrossRef.org) l’accesso degli studiosi ai contenuti digitali nelle pubblicazioni professionali e scientifiche

La malattia di Alzheimer (AD) è prevalentemente sporadica e dovuta ad inte- razione tra fattori di natura genetica e ambientale. Molti dei potenziali fattori ambientali di rischio per l’AD sono in grado di indurre modificazioni epigene tiche, un aspetto a lungo tempo ignorato negli studi atti a valutare le interazioni geni-ambiente in questa malattia. In questo articolo l’autore descrive i fattori genetici e ambientali di rischio per l’AD e come le loro interazioni potrebbero in parte essere mediate da meccanismi epigenetici;

Keywords:Malattia di Alzheimer, Epigenetica, Geni di Suscettibilità, Fattori Am- bientali, Metilazione del DNA, Interazioni Geni-Ambiente.

  1. Chen L., Guo X., Li Z., & He Y. (2019). Relationship between long non-coding RNAs and Alzheimer’s disease: a systematic review. Pathology - Research and Practice, 215(1):12-20.
  2. Coppedè F. (2018). The Epigenetics of Alzheimer’s and Other Neurodegenerative Di- sorders. In: Tollefsbol T.O. (Ed.), Epigenetics in Human Disease (Second Edition), (pp. 305–326). New York, NY: Academic Press.
  3. Coppedè F. (2021). One-carbon epigenetics and redox biology of neurodegeneration. Free Radicals in Biology and Medicine, 170:19–33.
  4. Coppedè F., & Stoccoro A. (2019). Mitoepigenetics and Neurodegenerative Diseases. Frontiers in Endocrinology (Lausanne), 10:86.
  5. Escott-Price V. & Schmidt K.M. (2021). Probability of Alzheimer’s disease based on common and rare genetic variants. Alzheimer’s Research & Therapy, 13, 140.
  6. Fuso A., Nicolia V., Pasqualato A., Fiorenza M.T., Cavallaro R.A., & Scarpa S. (2011). Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiology of Aging, 32(2):187–99.
  7. Fuso A., Nicolia V., Ricceri L., Cavallaro R.A., Isopi E., Mangia F., Fiorenza M.T., & Scarpa S. (2012). S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiology of Aging, 33(7):1482. e1–16.
  8. Grossi E., Stoccoro A., Tannorella P., Migliore L., & Coppedè F. (2016). Artifi- cial Neural Networks Link One-Carbon Metabolism to Gene-Promoter Methylation in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 53(4):1517–1522. DOI: 10.3233/JAD-16021
  9. Hardy J., & Selkoe D.J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297, 353–356.
  10. Kunkle B.W., Grenier-Boley B., Sims R., Bis J.C., Damotte V., Naj A.C., Boland A., Vronskaya M., van der Lee S.J., Amlie-Wolf A., Bellenguez C., Frizatti A., Choura- ki V., Martin E.R., Sleegers K., Badarinarayan N., Jakobsdottir J., Hamilton-Nel- son K.L., Moreno-Grau S., Olaso R., Raybould R., Chen Y., Kuzma A.B., Hiltunen M., Alzheimer Disease Genetics Consortium (ADGC), The European Alzheimer’s Disease Initiative (EADI), Cohorts for Heart and Aging Research in Genomic Epi- demiology Consortium (CHARGE), & Genetic and Environmental Risk in AD/De- fining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consor- tium (GERAD/PERADES). (2019). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 51, 414–430.
  11. Lambert J.C., Ibrahim-Verbaas C.A., Harold D., Naj A.C., Sims R., Bellenguez C., DeStafano A.L., Bis J.C., Beecham G.W., Grenier-Boley B., Russo G., Thorton-Wells T.A., Jones N., Smith A.V., Chouraki V., Thomas C., Ikram M.A., Zelenika D., Var- darajan B.N., Kamatani, Y., Lin C.F., Gerrish A., Schmidt H., European Alzheimer’s Disease Initiative (EADI), Genetic and Environmental Risk in Alzheimer’s Disease (GERAD), Alzheimer’s Disease Genetic Consortium (ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), …, & Amouyel P. (2013).
  12. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45, 1452–1458.
  13. Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S., Brayne C., Burns A., Cohen-Mansfield J., Cooper C., Costafreda S.G., Dias A., Fox N., Git- lin L.N., Howard R., Kales H.C., Kivimäki M., Larson E.B., Ogunniyi A., Orgeta V., Ritchie K., Rockwood K., Sampson E.L., Samus Q., Schneider L.S., Selbæk G., Teri L., & Mukadam N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 396(10248):413–446. DOI: 10.1016/S0140-6736(20)30367-
  14. Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Bal- lard C., Banerjee S., Burns A., Cohen-Mansfield J., Cooper C., Fox N., Gitlin L.N., Howard R., Kales H.C., Larson E.B., Ritchie K., Rockwood K., Sampson E.L., Samus Q., Schneider L.S., Selbæk G., Teri L., & Mukadam N. (2017). Dementia prevention, intervention, and care. Lancet, 390(10113):2673–2734. DOI: 10.1016/S0140-6736(17)31363-
  15. Marzi S.J., Leung S.K., Ribarska T., Hannon E., Smith A.R., Pishva E., Poschmann J., Moore K., Troakes C., Al-Sarraj S., Beck S., Newman S., Lunnon K., Schalkwyk L.C., & Mill J. (2018). A histone acetylome-wide association study of Alzheimer’s disease iden- tifies disease-associated H3K27ac differences in the entorhinal cortex. Nature Neuroscience, 21(11):1618–1627.
  16. Migliore L., & Coppedè F. (2022). Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nature Reviews Neurology, 18(11):643–660.
  17. Nativio R., Lan Y., Donahue G., Sidoli S., Berson A., Srinivasan A.R., Shcherbakova O., Amlie-Wolf A., Nie J., Cui X., He C., Wang L.S., Garcia B.A., Trojanowski J.Q., Bonini N.M., & Berger S.L. (2020). An integrated multi-omics approach identifies epige- netic alterations associated with Alzheimer’s disease. Nature Genetics, 52(10):1024–1035.
  18. Saji N., Murotani K., Hisada T., Kunihiro T., Tsuduki T., Sugimoto T., Kimura A., Niida S., Toba K., & Sakurai T. (2020). Relationship between dementia and gut microbio- me-associated metabolites: a cross-sectional study in Japan. Scientific Reports, 10(1):8088.
  19. Sims R., Hill M., & Williams J. (2020). The multiplex model of the genetics of Alzheimer’s disease. Nature Neuroscience, 23, 311–322.
  20. Smith R.G., Pishva E., Shireby G., Smith A.R., Roubroeks J.A.Y., Hannon E., Wheildon G., Mastroeni D., Gasparoni G., Riemenschneider M., Giese A., Sharp A.J., Schalkwyk L., Haroutunian V., Viechtbauer W., van den Hove D.L.A., We- edon M., Brokaw D., Francis P.T., Thomas A.J., Love S., Morgan K., Walter J., Coleman P.D., Bennett D.A., DeJager P.L., Mill J., & Lunnon K. (2021). A meta-a- nalysis of epigenome-wide association studies in Alzheimer’s disease highlights no- vel differentially methylated loci across cortex. Nature Communications, 12(1):3517.
  21. Takousis P., Sadlon A., Schulz J., Wohlers I., Dobricic V., Middleton L., Lill C.M., Per- neczky R., & Bertram L. (2019). Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s & Dementia, 15(11):1468–1477.
  22. Villa C., & Stoccoro A. (2022). Epigenetic Peripheral Biomarkers for Early Diagnosis of Alzheimer’s Disease. Genes (Basel), 13(8):1308.
  23. Wightman D.P., Jansen I.E., Savage J.E., Shadrin A.A., Bahrami S., Holland D., Rongve A., Børte S., Winsvold B.S., Drange O.K., Martinsen A.E., Skogholt A.H., Willer C., Bråthen G., Bosnes I., Nielsen J.B., Fritsche L.G., Thomas L.F., Pedersen L.M., Gabrielsen M.E., Johnsen M.B., Meisingset T.W., Zhou W., Proitsi P., Hod- ges A., Dobson R., Velayudhan L., Heilbron K., Auton A., 23andMe Research Team, Sealock J.M., Davis L.K., Pedersen N.L., Reynolds C.A., Karlsson I.K., Magnusson S., Stefansson H., Thordardottir S., Jonsson P.V., Snaedal J., Zettergren A., Skoog I., Kern S., Waern M., Zetterberg H., Blennow K., Stordal E., Hveem K., Zwart J.A., Athanasiu L., Selnes P., Saltvedt I., Sando S.B., Ulstein I., Djurovic S., Fladby T., Aarsland D., Selbæk G., Ripke S., Stefansson K., Andreassen O.A., & Posthu- ma D. (2021). A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nature Genetics, 53(9):1276–1282.
  24. Wu J., Basha M.R., Brock B., Cox D.P., Cardozo-Pelaez F., McPherson C.A., Harry J., Rice D.C., Maloney B., Chen D., Lahiri D.K., & Zawia N.H. (2008). Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. Journal of Neuroscience, 28(1):3–9. DOI: 10.1523/JNEUROSCI.4405-07.2008
  25. Yamazaki Y., Zhao N., Caulfield T.R., Liu C.C., & Bu G. (2019). Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nature Reviews Neurolo- gy, 15, 501–518.

Fabio Coppedè, Le modifi cazioni epigenetiche. Un aspetto a lungo ignorato negli studi atti a valutare le interazioni geni-ambiente nella malattia di Alzheimer in "PNEI REVIEW" 1/2023, pp 53-67, DOI: 10.3280/PNEI2023-001004